

WIGNER RESEARCH CENTRE FOR PHYSICS

Topological protection of quantum information

Asbóth János

Wigner RCP, Dept. of Quantum Optics and Quantum Information, Hungarian Academy of Sciences, Budapest

Kvantummérés Lendület csoport

2014. február 2., ELTE Kvantumfizika Téli Iskola

- Protection of Quantum Information?
 - Quantum Error Correction
- Topological?
 - Majorana Wire
 - Experiments

1. Quantum Error Correction

2. Topological by nature: Majorana Wire

Classical: Dissipation discretizes errors. Majority voting corrects them

- 1 bit, 2 states in RAM: voltage > 0.5V, voltage < 0.5V
- Small errors (charge leakage, voltage creep) → correct by charge refresh, dissipation
- Big error = bit flip: correct using redundancy
 - 1) use 3 physical bits For 1 logical bit
 - 2) If not equal (syndrome), flip the minority bit (correct).

Quantum information is fragile

$$|\Psi\rangle = a|0\rangle + b|1\rangle; \quad a, b \in \mathbb{C}$$

- One qubit, 2 real parameters (normalization, global phase unimportant) → Continuous information, small errors
- Cannot use dissipation to discretize
- Measurement can destroy information

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \qquad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$$

Redundancy protects against single bit flip errors

$$|0\rangle \to |\overline{0}\rangle = |000\rangle |1\rangle \to |\overline{1}\rangle = |111\rangle$$

$$a |0\rangle + b |1\rangle \to a |000\rangle + b |111\rangle$$

Bit flip, X takes us out of computational space.

$$a |010\rangle + b |101\rangle$$

1) Syndrome Measurement:

$$(Z_2 \oplus Z_3, Z_1 \oplus Z_3) = (1,0)$$

⊕ is XOR = + (mod 2) Nonlocal measurement → Reveals position of error without measuring the value

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$$

Problem: phase errors stay in computational subspace

$$|\Psi\rangle = a\,|000\rangle + b\,|111\rangle$$

$$Z_1 |\Psi\rangle = Z_2 |\Psi\rangle = Z_3 |\Psi\rangle = a |000\rangle - b |111\rangle$$

Redundancy just increases error probability.

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix};$$

Extra redundancy in different basis protects against phase errors too

$$|0\rangle \rightarrow |\bar{0}\rangle = (|000\rangle + |111\rangle) (|000\rangle + |111\rangle) (|000\rangle + |111\rangle)$$

$$|1\rangle \rightarrow |\bar{1}\rangle = (|000\rangle - |111\rangle) (|000\rangle - |111\rangle) (|000\rangle - |111\rangle)$$

1) Syndrome Measurement:

$$(X_1X_2X_3X_4X_5X_6, X_4X_5X_6X_7X_8X_9)$$

Shor code, 1995.

Peter Shor

- *1959
- MIT / Berkeley / Bell Laboratories
- 1994: Quantum Factoring Algorithm
- 1995: First Quantum Error Correcting Code
- MIT Applied Mathematics
- 2002, King Faisal Prize for Science (200 k\$)

Shor code: computational states are highly entangled

$$|0\rangle \rightarrow |\overline{0}\rangle = (|000\rangle + |111\rangle) (|000\rangle + |111\rangle) (|000\rangle + |111\rangle)$$

$$|1\rangle \rightarrow |\overline{1}\rangle = (|000\rangle - |111\rangle) (|000\rangle - |111\rangle) (|000\rangle - |111\rangle)$$

Entanglement protects information against local errors

- Local errors, e.g., decoherence: even small errors leave computational subspace
 - can be diagnosed by syndrome measurement,
 - → can be corrected
- Logical operations (quantum gates) have to be very entangled

Error correction possible if gates are very precise (error threshold 1%)

- Error correction: number of extra gates should scale polynomially
- Error threshold depends on scheme, 10⁻⁵ ... 10⁻² error probability

- What is the best architecture for error correction?
- Can we use error-proof quantum hardware?

Literature

• John Preskill lecture Quantum Information lecture notes

1. Quantum Error Correction

2. Topological by nature: Majorana Wire

Error correction possible if gates are very precise (error threshold 1%)

- Error correction: number of extra gates should scale polynomially
- Error threshold depends on scheme, 10⁻⁵ ... 10⁻² error probability

- What is the best architecture for error correction?
- Can we use error-proof quantum hardware?

Alexey Kitaev

- *1963
- Landau Institute / Microsoft Research
- 2001: Kitaev Wire
- 2006: Toric Code
- CalTech, Theoretical Physics & Maths
- 2012: Fundamental Physics Prize (3 M\$ = 2x Nobel)

Minimal model for superconductors: Cooper pairs created/broken at all sites

$$\hat{H} = -\mu \sum_{x=1}^{L} \sum_{s=\uparrow,\downarrow} \hat{c}_{x,s}^{\dagger} \hat{c}_{x,s} - t \sum_{x=1}^{L} \sum_{s=\uparrow,\downarrow} \hat{c}_{x,s}^{\dagger} \hat{c}_{x+1,s} + h.c. - |\Delta| e^{i\phi} \sum_{x=1}^{L} \hat{c}_{x,\uparrow} \hat{c}_{x,\downarrow} + h.c.$$

Kitaev's minimal model for spinless, *p-wave* superconductor

$$H = -\mu \sum_{x=1}^{L} \hat{c}_x^{\dagger} \hat{c}_x - t \sum_{x=1}^{L} \hat{c}_x^{\dagger} \hat{c}_{x+1} + h.c. - |\Delta| e^{i\phi} \sum_{x=1}^{L} \hat{c}_x \hat{c}_{x+1} + h.c.$$

Single spin component → drop spin index

Quadratic Hamiltonian → can be seen as noninteracting, free particles

$$\hat{H} = -\mu \sum_{x=1}^{L} \hat{c}_x^{\dagger} \hat{c}_x - t \sum_{x=1}^{L} \hat{c}_x^{\dagger} \hat{c}_{x+1} + h.c. - |\Delta| e^{i\phi} \sum_{x=1}^{L} \hat{c}_x \hat{c}_{x+1} + h.c.$$

$$\hat{H} = \sum_{l=1}^{L} E_l \hat{d}_l^{\dagger} \hat{d}_l$$

Noninteracting eigenstates: linear combinations of electrons and holes:

$$\hat{d}_l = \sum_x u_{lx} \hat{c}_x + v_{lx} \hat{c}_x^{\dagger}$$

$$\{\hat{d}_l, \hat{d}_m\} = 0$$

$$\{\hat{d}_l, \hat{d}_m^{\dagger}\} = \delta_{lm}$$

Can be restricted to positive energy

$$E_l > 0$$

The coefficients u_{lx} and v_{lx} are the components of the wavefunction of γ_{lx}

$$\hat{H} = -\mu \sum_{x=1}^{L} \hat{c}_x^{\dagger} \hat{c}_x - t \sum_{x=1}^{L} \hat{c}_x^{\dagger} \hat{c}_{x+1} + h.c. - |\Delta| e^{i\phi} \sum_{x=1}^{L} \hat{c}_x \hat{c}_{x+1} + h.c.$$

$$\hat{H} = \sum_{l=1}^{L} E_l \hat{d}_l^{\dagger} \hat{d}_l$$

Noninteracting eigenstates: linear combinations of electrons and holes:

$$\hat{d}_l = \sum_x u_{lx} \hat{c}_x + v_{lx} \hat{c}_x^{\dagger}$$

Fermionic anticommutation relations → Normalized, orthogonal wavefunctions

Ground state has no excitations.

$$|GS\rangle = \prod \hat{d}_l |0\rangle$$

Superconductor ground state, complicated

Empty state containing no electrons, simple

The wavefunctions of the excitations are found via the Bogoliubov-de Gennes trick

1. Rewrite the Hamiltonian

$$\hat{H} = \sum_{l=1}^{L} E_l \hat{d}_l^{\dagger} \hat{d}_l = \frac{1}{2} \sum_{l=1}^{L} E_l \hat{d}_l^{\dagger} \hat{d}_l - \frac{1}{2} \sum_{l=1}^{L} E_l \hat{d}_l \hat{d}_l^{\dagger} + \frac{1}{2} \sum_{l=1}^{L} E_l \hat{d}_l \hat{d}_l^{\dagger}$$

2. Use shorthand

$$c^{\dagger} = (\hat{c}_{1,\uparrow}^{\dagger}, \hat{c}_{1,\downarrow}^{\dagger}, \dots, \hat{c}_{N,\uparrow}^{\dagger}, \hat{c}_{N,\downarrow}^{\dagger});$$

$$c = (\hat{c}_{1,\uparrow}, \hat{c}_{1,\downarrow}, \dots, \hat{c}_{N,\uparrow}, \hat{c}_{N,\downarrow});$$

$$\hat{H} = \sum_{\alpha,\beta} c_{\alpha}^{\dagger} h_{\alpha,\beta} c_{\beta} + \frac{1}{2} c_{\alpha}^{\dagger} \Delta_{\alpha,\beta} c_{\beta}^{\dagger} + \frac{1}{2} c_{\beta} \Delta_{\alpha,\beta}^{*} c_{\alpha};$$

$$\hat{H} = \frac{1}{2} \begin{pmatrix} c^{\dagger} & c \end{pmatrix} \begin{pmatrix} h & \Delta \\ -\Delta^{*} & -\tilde{h} \end{pmatrix} \begin{pmatrix} c \\ c^{\dagger} \end{pmatrix} + \frac{1}{2} \text{Tr} h.$$

Eigenvectors of H_{bdG} are the wavefunctions of quasiparticles

3. Introduce the single-particle Hamiltonian H_{bdG}

$$\hat{H} = \frac{1}{2} \begin{pmatrix} c^{\dagger} & c \end{pmatrix} \underbrace{\begin{pmatrix} h & \Delta \\ -\Delta^* & -\tilde{h} \end{pmatrix}}_{\mathcal{H}_{BdG}} \begin{pmatrix} c \\ c^{\dagger} \end{pmatrix} + \frac{1}{2} \text{Tr} h.$$

 j^{th} eigenvector of H_{bdG} is the (complex conjugate of) the wavefunction of γ_i .

4. Every free fermion d_j is represented twice – Particle-Hole Symmetry

Bogoliubov-de Gennes "trick" ensures Particle-Hole Symmetry

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} h & \Delta \\ -\Delta^* & -\tilde{h} \end{pmatrix}^* \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -\begin{pmatrix} h & \Delta \\ -\Delta^* & -\tilde{h} \end{pmatrix}$$

$$\sigma_x K \mathcal{H}_{BdG} K \sigma_x = -\mathcal{H}_{BdG}$$

Exchange particles for holes

Complex conjugation in position space

Every eigenstate of H_{bdG} has a particle-hole symmetric partner

$$\mathcal{H}_{BdG} |\Psi\rangle = E |\Psi\rangle$$

$$\mathcal{H}_{BdG} \sigma_x K |\Psi\rangle = -E \sigma_x K |\Psi\rangle$$

Particle-Hole Symmetry ensures Spectrum of H_{bdc} has to be symmetric

Majorana fermions: mathematical tool.

Decompose each fermion into "real and imaginary parts"

$$\hat{c}_x = \frac{1}{2}e^{-i\phi/2}(\hat{\gamma}_{B,x} + i\hat{\gamma}_{A,x}) \qquad \hat{\gamma}_{B,x} = e^{i\phi/2}\hat{c}_x + e^{-i\phi/2}\hat{c}_x^{\dagger}$$

$$\hat{c}_x^{\dagger} = \frac{1}{2}e^{i\phi/2}(\hat{\gamma}_{B,x} - i\hat{\gamma}_{A,x}) \qquad \hat{\gamma}_{A,x} = -i\left(e^{i\phi/2}\hat{c}_x + ie^{-i\phi/2}\hat{c}_x^{\dagger}\right)$$

These Majorana operators are self-adjoint fermions

$$\{\hat{\gamma}_{A,x},\hat{\gamma}_{B,x'}\}=0; \quad \{\hat{\gamma}_{A,x},\hat{\gamma}_{A,x'}\}=\{\hat{\gamma}_{B,x},\hat{\gamma}_{B,x'}\}=2\delta_{xx'}$$

Two simple limiting cases: disconnected sites vs equal hopping and pair potential

(a)
$$t = \Delta = 0 \Longrightarrow \hat{H} = \frac{i}{2} \sum_{x} \hat{\gamma}_{A,x} \gamma_{B,x}$$

$$\uparrow_{A,1} \gamma_{B,1} \gamma_{B,1} \gamma_{B,2} \gamma_{B,2} \gamma_{B,3} \gamma_{B,3} \qquad \uparrow_{A,N} \gamma_{B,N}$$

(b)
$$t = \Delta \neq \mu = 0$$

$$\gamma_{A,1} \gamma_{B,1} \gamma_{A,2} \gamma_{B,2} \gamma_{A,3} \gamma_{B,3} \cdots \gamma_{A,N} \gamma_{B,N}$$

$$\hat{H} = \frac{it}{2} \sum_{x} \hat{\gamma}_{B,x} \gamma_{A,x+1}$$

"topologically nontrivial"

The two Majorana fermions "left out" of the Hamiltonian form a zero-energy particle

$$\hat{d}_0 = \hat{\gamma}_{A,1} + i\hat{\gamma}_{B,N}$$
 $\hat{H} = \sum_{l=1}^{N-1} E_l \hat{d}_l^{\dagger} \hat{d}_l$

- Two Majoranas at the two ends combine to a zero-energy fermion
- Local excitations
- Equal weight particle and hole
- Their own particle-hole partners
- → Energy unchanged by local perturbations

Going away from the limiting case, the particle still has zero energy.

$$\hat{d}_{0} = \hat{\gamma}_{1} + i\hat{\gamma}_{2}$$

$$\hat{\gamma}_{1} = a_{1}\hat{\gamma}_{A,1} + a_{2}\hat{\gamma}_{A,2} + \dots$$

$$\hat{\gamma}_{2} = b_{1}\hat{\gamma}_{B,N} + b_{2}\hat{\gamma}_{B,N-1} + \dots$$

- In Bogoliubov-de Gennes picture, y_1 and y_2 are zero energy eigenstates
- Bulk gap → their wavefunctions remain exponentially localized
- They are their own particle-hole partners
- → Energy unchanged by local perturbations

Quantum information can be hidden in Majorana modes

$$|\Psi\rangle = \alpha |G\rangle + \beta \hat{d}_0^{\dagger} |G\rangle$$

- Local environment cannot degrade the quantum information
 - → no bit flips (d is a nonlocal particle)
 - → no phase errors (d has zero energy)

Majoranas can be created in experiment

Majoranas can be pushed around using a "keyboard" of electric bottom gates

Figure 2 | Applying a 'keyboard' of individually tunable gates to the wire allows local control of which regions are topological (dark blue) and non-topological (light blue), and hence manipulate Majorana fermions while maintaining the bulk gap. As a and b illustrate, sequentially applying

- Local chemical potential µ controlled by voltage on bottom gates
- Move Majoranas
- Create or annihilate neighbouring Majoranas
- If change slow enough,

$$au \gg rac{\hbar}{\delta H}$$

adiabatic limit: avoid exciting other modes

[Alicea et al, Nature Physics, 2011]

Some logical operations can be realized by braiding Majoranas

Figure 3 | A T-junction provides the simplest wire network that enables meaningful adiabatic exchange of Majorana fermions. Using the methods

Other operations, readout: Ideas using interferometry, interaction...

2012: Experimental race won by Kouwenhoven group, Delft

Cleanest signs of the presence of protected Majorana states

- No manipulation, no braiding yet
- Most itt posztdokoskodik Geresdi Attila, BME

"Smoking gun": transmission resonance at 0 energy that appears due to magnetic field

Majorana fermion: 70 year old search

- *1906
- Until 1933: successful physicist, works with Fermi, Heisenberg...
- From 1933: illnesses, no position, no publications
- 1937: Real solutions to Dirac equation, particles can be their own antiparticles
- 1938: boat trip Palermo → Napoli, disappears

Majorana fermions in quantum wire: not elementary particles, quasiparticles

Almost Breakthrough of the Year 2012 (behind Higgs boson)

Summary

- Environment-induced errors can be prevented by encoding quantum information nonlocally
- Example: 9-bit Shor code
 - Syndrome measurements discretize errors
 - Error correcting operations
- Alternative to error correction is fault-tolerant hardware
- Example: Majorana Wire
 - Qubits protected by particle-hole symmetry and by bulk gap
 - Manipulating nonlocal quantum information: braiding + other ideas also needed
 - Experiment: 1st step = detection of Majorana fermion ready (almost)