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● Protection of Quantum Information?
–  Quantum Error Correction

● Topological?  
– Majorana Wire

– Experiments



  

1.  Quantum Error Correction 

2.  Topological by nature: Majorana Wire



  

Classical: Dissipation discretizes errors. 
Majority voting corrects them

1) use 3 physical bits
     For 1 logical bit  

2) If not equal (syndrome), 
      flip the minority bit (correct). 

1 bit, 2 states in RAM: 
        voltage > 0.5V, voltage < 0.5V

● Small errors (charge leakage, voltage creep) → correct by 
charge refresh, dissipation

● Big error = bit flip: correct using redundancy



  

Quantum information is fragile

– One qubit, 2 real parameters  (normalization, global phase 
unimportant)→ Continuous information, small errors

– Cannot use dissipation to discretize 

– Measurement can destroy information 



  

Redundancy protects against single bit flip 
errors 

Bit flip, X takes us out of computational space. 

 ⊕ is XOR = + (mod 2)
Nonlocal measurement → Reveals position of error without 
measuring the value

1) Syndrome Measurement: 



  

Problem: phase errors stay in computational 
subspace

Redundancy just increases error probability. 



  

Extra redundancy in different basis protects 
against phase errors too

1) Syndrome Measurement:

Shor code, 1995.



  

Peter Shor

● *1959
● MIT / Berkeley / Bell Laboratories
● 1994: Quantum Factoring Algorithm
● 1995: First Quantum Error Correcting Code
● MIT Applied Mathematics
● 2002, King Faisal Prize for Science (200 k$)



  

Shor code: computational states are highly 
entangled



  

Entanglement protects information against 
local errors

● Local errors, e.g., decoherence: even small errors leave 
computational subspace

– → can be diagnosed by syndrome measurement, 

– → can be corrected
● Logical operations (quantum gates) have to be very 

entangled



  

Error correction possible if gates are very 
precise (error threshold 1%)

● Error correction: number of extra gates should scale 
polynomially

● Error threshold depends on scheme, 
10-5 … 10-2 error probability

● What is the best architecture for error correction? 

● Can we use error-proof quantum hardware? 



  

Literature

● John Preskill lecture Quantum Information lecture notes 
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Alexey Kitaev

● *1963
● Landau Institute / Microsoft Research
● 2001: Kitaev Wire
● 2006: Toric Code 
● CalTech, Theoretical Physics & Maths
● 2012: Fundamental Physics Prize (3 M$ = 2x Nobel)



  

Minimal model for superconductors: 
Cooper pairs created/broken at all sites

x=1 x=Lt

Condensate of Cooper pairs

hopping

Cooper pair breaking
Cooper  
pair creation



  

Kitaev's minimal model for spinless, p-wave 
superconductor

x=1 x=Lt

Condensate of Cooper pairs

hopping

Cooper pair 
 breaking

Cooper pair  
creation

Single spin component → drop spin index

[2001, Kitaev, Physics Uspekhi]



  

Quadratic Hamiltonian → can be seen as 
noninteracting, free particles

Noninteracting eigenstates: linear combinations
  of electrons and holes:
  

Fermions:

Can be restricted to 
positive energy



  

The coefficients u
lx
 and v

lx
 are the 

components of the wavefunction of γ
l

Noninteracting eigenstates: linear combinations
  of electrons and holes:
  

Fermionic anticommutation relations → Normalized, orthogonal 
wavefunctions
  



  

Ground state has no excitations.

Superconductor 
ground state, 
complicated

Empty state 
containing no 
electrons, simple 



  

The wavefunctions of the excitations are 
found via the Bogoliubov-de Gennes trick

1. Rewrite the Hamiltonian 

2. Use shorthand



  

Eigenvectors of H
bdG

 are the wavefunctions 
of quasiparticles

jth eigenvector of H
bdG

 is the (complex conjugate of) the wavefunction of γ
j
. 

3. Introduce the single-particle Hamiltonian H
bdG

 

4. Every free fermion d
j 
is represented twice – Particle-Hole 

Symmetry  



  

Bogoliubov-de Gennes “trick” ensures 
Particle-Hole Symmetry

Exchange 
particles for 
holes

Complex 
conjugation in 
position space

Every eigenstate of H
bdG

 has a particle-hole symmetric partner



  

Particle-Hole Symmetry ensures Spectrum 
of H

bdG
 has to be symmetric

x=1 x=Lt

Condensate of Cooper pairs

hopping

Cooper pair 
 breaking

Cooper pair  
creation

Translation invariant bulk Right endLeft end



  

Majorana fermions: mathematical tool.

Decompose each fermion into “real and imaginary parts”

These Majorana operators are self-adjoint fermions



  

Two simple limiting cases: disconnected 
sites vs equal hopping and pair potential

       “topologically nontrivial” 



  

The two Majorana fermions “left out” of the 
Hamiltonian form a zero-energy particle

● Two Majoranas at the two ends combine to a zero-energy 
fermion

● Local excitations 
● Equal weight particle and hole
● Their own particle-hole partners 
● → Energy unchanged by local perturbations



  

Going away from the limiting case, the 
particle still has zero energy. 

● In Bogoliubov-de Gennes picture, γ1 and γ2 are zero energy 
eigenstates

● Bulk gap → their wavefunctions remain exponentially localized 
● They are their own particle-hole partners 
● → Energy unchanged by local perturbations



  

Quantum information can be hidden in 
Majorana modes

● Local environment cannot degrade the quantum information

→  no bit flips (d is a nonlocal particle) 
→ no phase errors (d has zero energy)  



  

Majoranas can be created in experiment 

[Lutchyn et al, Oreg et al, PRL 2010]



  

Majoranas can be pushed around using a 
“keyboard” of electric bottom gates

● Local chemical potential μ 
controlled by voltage on 
bottom gates

● Move Majoranas
● Create or annihilate 

neighbouring Majoranas
● If change slow enough, 

adiabatic limit: avoid 
exciting other modes

[Alicea et al, Nature Physics, 2011]



  

Some logical operations can be realized by 
braiding Majoranas 



  

Other operations, readout: Ideas using 
interferometry, interaction...

[Hassler et al, NJP, 2010]



  

2012: Experimental race won by 
Kouwenhoven group, Delft

● Cleanest signs of the 
presence of protected 
Majorana states

● No manipulation, no 
braiding yet

● Most itt posztdokoskodik 
Geresdi Attila, BME



  

“Smoking gun”: transmission resonance at 0 
energy that appears due to magnetic field



  

Majorana fermion: 70 year old search

● *1906
● Until 1933: successful physicist, 

works with Fermi, Heisenberg...
● From 1933: illnesses, no position, 

no publications
● 1937: Real solutions to Dirac 

equation, particles can be their own 
antiparticles

● 1938: boat trip Palermo → Napoli, 
disappears

Majorana fermions in quantum wire: not elementary 
particles, quasiparticles



  

Almost Breakthrough of the Year 2012 (behind 
Higgs boson)



  

Summary

● Environment-induced errors can be prevented by encoding 
quantum information nonlocally

● Example: 9-bit Shor code
– Syndrome measurements discretize errors

– Error correcting operations 

● Alternative to error correction is fault-tolerant hardware
● Example: Majorana Wire

– Qubits protected by particle-hole symmetry and by bulk gap 

– Manipulating nonlocal quantum information: braiding + other ideas 
also needed

– Experiment: 1st step = detection of Majorana fermion ready 
(almost)
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