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BHQC

Recently a striking correspondence has been discovered between
two seemingly unrelated fields.

1 The theory of multipartite entanglement in Quantum
Information

2 Black hole solutions in String Theory

The basic correspondence is between entropy formulas and classes
of black hole solutions in string theory and formulas for
entanglement measures and classes of simple multipartite
entangled systems with both distinguishable and indistinguishable
constituents.
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BHQC

The term Black-Hole/Qubit correspondence has been coined by
the string theorist Michael J. Duff.

A recent review of the topic is given in

L. Borsten, M. J. Duff and P. Lévay
”The Black-Hole/Qubit Correspondence: an up-to-date review”

Class. Quantum Grav. 29 (2012) 224008
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Plan of the talk

1 SLOCC classification of three-qubit entanglement

2 Cayley’s hyperdeterminant as an entanglement measure

3 Entanglement monogamy

4 Real states

5 Black Holes

6 String Theory

7 The Attractor Mechanism, STU model

8 The STU model and three qubits

9 The Attractor Mechanism and three qubits

10 Qubits from extra dimensions

11 The STU model and four qubits

12 Conclusions
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Péter Lévay The Black-Hole/Qubit ”Correspondence”



Plan of the talk

1 SLOCC classification of three-qubit entanglement

2 Cayley’s hyperdeterminant as an entanglement measure

3 Entanglement monogamy

4 Real states

5 Black Holes

6 String Theory

7 The Attractor Mechanism, STU model

8 The STU model and three qubits

9 The Attractor Mechanism and three qubits

10 Qubits from extra dimensions

11 The STU model and four qubits

12 Conclusions
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Three qubit entanglement

An arbitrary three-qubit pure state |ψ〉 ∈ C2 ⊗ C2 ⊗ C2 is
characterized by 8 complex numbers ψkji

|ψ〉 =
1∑

k,j ,i=0

ψkji |lkj〉 |kji〉 ≡ |k〉C ⊗ |j〉B ⊗ |i〉A

In a class of quantum information protocols the parties can
manipulate their qubits reversibly with some probability of success
by performing local manipulations assisted by classical
communication between them. Such protocols are called stochastic
local operations and classical communication (SLOCC).
Mathematically they can be represented as transformations of the
form

|ψ〉 7→ (C ⊗ B ⊗A)|ψ〉, C ⊗ B ⊗A ∈ GL(2,C)⊗3

Classification of entanglement amounts to classifying the SLOCC
orbits.
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The SLOCC classification of three-qubit entanglement

In the physics literature the basic result is due to W. Dür, G. Vidal
and J. I. Cirac Phys. Rev. A62 062314 (2000). For the
mathematicians this result is known as the classification of trilinear
forms for more than 130 years.

C. Le Paige: ”Sur les formes trilinéaires”, Comptes rendus de
l’Académie des Sciences 92 1103 (1881).

1 (A)(B)(C ) separable, eg. |000〉

2 (A)(BC ) biseparable, eg. (|00〉+ |11〉)⊗ |0〉
3 (B)(AC ) biseparable

4 (C )(AB) biseparable

5 W-class, eg. |001〉+ |010〉+ |100〉
6 GHZ-class, eg. |000〉+ |111〉
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l’Académie des Sciences 92 1103 (1881).

1 (A)(B)(C ) separable, eg. |000〉
2 (A)(BC ) biseparable, eg. (|00〉+ |11〉)⊗ |0〉
3 (B)(AC ) biseparable

4 (C )(AB) biseparable

5 W-class, eg. |001〉+ |010〉+ |100〉

6 GHZ-class, eg. |000〉+ |111〉
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Cayley’s hyperdeterminant as the three-tangle

There are polynomial invariants characterizing these entanglement
classes. The most important one is the SL(2,C)⊗3 and
permutation (triality) invariant three-tangle related to Cayley’s
hyperdeterminant (1845).

D(|ψ〉) ≡ ψ2
000ψ

2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

011ψ
2
100

− 2(ψ000ψ001ψ110ψ111 + ψ000ψ010ψ101ψ111

+ ψ000ψ011ψ100ψ111 + ψ001ψ010ψ101ψ110

+ ψ001ψ011ψ110ψ100 + ψ010ψ011ψ101ψ100)

4 (ψ000ψ011ψ101ψ110 + ψ001ψ010ψ100ψ111)

τABC ≡ 4|D(|ψ〉)| ≤ 1

The two classes containing genuine tripartite entanglement are the
W and GHZ classes having τABC (|W 〉) = 0 and τABC (|GHZ 〉) 6= 0.
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Attaching special role to qubits

By chosing the first, second or third qubit one can introduce three
sets of complex four vectors, e.g. by chosing the first we can define

ξ
(A)
I =


ψ000

ψ010

ψ100

ψ110

 , η
(A)
J =


ψ001

ψ011

ψ101

ψ111

 I , J = 0, 1, 2, 3

Similarly we can define the four-vectors ξ(B), η(B) and ξ(C), η(C).
We also define three bivectors with components called Plücker
coordinates

P
(A)
IJ = ξ

(A)
I η

(A)
J − ξ

(A)
J η

(A)
I
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The structure of the three-tangle

Then we have

τABC = 2|P(A)
IJ P(A)IJ | = 2|P(B)

IJ P(B)IJ | = 2|P(C)
IJ P(C)IJ |

where indices are raised with respect to the SL(2,C)× SL(2,C)
invariant metric g = ε⊗ ε

g IJ =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 =

(
0 1
−1 0

)
⊗

(
0 1
−1 0

)

Since the Plücker coordinates are SL(2,C) invariant the expression
above shows the SL(2,C)⊗3 and triality invariance at the same
time. Notice that the three-tangle can also be written in the form

τABC = 4|(ξ · ξ)(η · η)− (ξ · η)2| = 4| − D(|ψ〉)|

with ξ · η = g IJξIηJ .
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The linear entropy

One and two partite reduced density matrices are defined as

ρA = TrBC |ψ〉〈ψ|, ρBC = TrA|ψ〉〈ψ|

Define τA(BC) which is two times the linear entropy between the
subsystems A and BC

τA(BC) = 4DetρA = 2[Tr(ρA)2 − 1] =
4∑

I ,J=1

P
(A)
IJ P

(A)
IJ

We can alternatively write

τA(BC) = 4(〈ξ|ξ〉〈η|η〉 − |〈ξ|η〉|2) ≤ 1

τA(BC) = 0 if and only if ξ(A) and η(A) are linearly dependent. In
this case the corresponding reduced density matrix ρA has rank one
a condition equivalent to A(BC ) separability.
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Two-partite correlations inside a three-qubit state

A useful measure for the two-qubit mixed-state entanglement is
the Wootters concurrence

τAB = (max{λ1 − λ2 − λ3 − λ4, 0} ≤ 1)2

where λi , i = 1, 2, 3, 4 is the nonincreasing sequence of the
square-roots of the eigenvalues for the nonnegative matrix

ρAB ρ̃AB ≡ ρAB(ε⊗ ε)ρAB(ε⊗ ε)

The invariants discussed above are not independent, they are
subject to the important relations

τA(BC) = τAB + τAC + τABC
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The Coffman-Kundu-Wootters relation (2000)

We can write the above relation as

τAB + τAC ≤ τA(BC)

A consequence of this is that if two qubits are maximally entangled
with each other then neither of them can be at all entangled with
the third one. This fact is called the monogamy of entanglement.
According to T. J. Osborne and F. Verstraete (2006) this relation
also holds for an arbitrary number of qubits a special case is e.g.

τAB1 + τAB2 + . . . τABn ≤ 1

Hence qubit A has a limited amount of entanglement to share.
Any amount of entanglement that it has with qubit B1 reduces the
amount available for the rest of the qubits.
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Principal null directions

Consider a pure three-qubit state which is not A(BC ) or
(A)(B)(C ) separable. One can then find null vectors called
principal null directions of the form

uI ≡ aξI + bηI , a, b ∈ C

with a, b satisfying

a2(ξ · ξ) + 2ab(ξ · η) + b2(η · η) = 0

The PNDs are:

uI = −PIJξ
J −

√
DξI , vI = −PIJη

J +
√

DηI

For the W-class we have one, for the GHZ-class we have two
PNDs. It can be shown that any state |ψ〉 from the GHZ-class can
be brought to the form

|ψ〉 = |u〉 ⊗ |u〉 ⊗ |u〉+ |v〉 ⊗ |v〉 ⊗ |v〉

where |u〉 and |v〉 are determined by the PNDs.
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Real states

The new feature of the classification of SLOCC entanglement
types for three ”rebits” under the group GL(2,R)⊗3 is that the
usual GHZ-class splits into two classes with representatives

|GHZ 〉− =
1

2
(|000〉 − |011〉 − |101〉 − |110〉), D < 0

|GHZ 〉+ =
1

2
(|000〉+ |011〉+ |101〉+ |110〉), D > 0

|GHZ 〉+ = (H ⊗ H ⊗ H)|GHZ 〉, H =
1√
2

(
1 1
1 −1

)

|GHZ 〉− = (J ⊗ J ⊗ J)|GHZ 〉, J =
1√
2

(
1 i
1 −i

)
|GHZ 〉 =

1√
2
(|000〉+ |111〉)
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Black Holes

l2Planck =
~GN

c3
' 10−33cm, m2

Planck =
~c

GN

1 Quantum Gravity= ”Information and entropy densely packed”
(Leonard Susskind)

2 Black Holes are the smallest objects for a given mass. Gerard
’t Hooft: ”The spectrum of particles does not terminate at
the Planck mass. It continues on to indefinitely large mass in
the form of black holes.”

3 ”Black holes are the Hydrogen atom of quantum gravity.”
4 In this spirit, here the BHs to be considered are massive

particle like states of a suitable field theory. Black Holes as
supersymmetric solitons.

5 The BHs we consider are extremal , charged black holes.
Extremal means that the Hawking temperature of such
objects is zero.
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Black Hole Entropy

The Bekenstein-Hawking entropy formula

S = k
A

4l2Planck

, l2Planck =
~GN

c3

enjoys the following properties:

1 Maximality

2 Universality

3 Discreteness

4 ”No hair” (M,Q,(P),J)

Discreteness means that adding one bit of information will increase
the area of the horizon of any black hole by one Planck unit of
area. ”Information equals area.” The horizon can be imagined
as a surface, packed densely with ”material” bits.
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Microstates from String Theory

If we tile the horizon with Planck sized cells and assign one degree
of freedom to each cell, then S will go like area. This suggests that
S can be described by some sort of microstates living on the
horizon itself.
Universality of black hole entropy in General Relativity could be an
indication of universality in statistical mechanics.

S = k log {microstates}

The black hole is a strongly coupled quantum system of extended
objects (membranes, strings). Note: the specific details of string
theory are not needed to derive the area law! One can argue that
by making educated guesses on the possible form of some
consistent theory of quantum gravity is enough for understanding
the microscopic origin of black hole entropy.
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String compactifications

1 M-theory

2 String theories (I,IIA, IIB, HeteroticE, HeteroticS)

3 Low energy Supergravities in 10D

4 Supergravities in 4D

17→2 The role of Dualities
27→3 The role of Effective Field Theories. From extended
objects (branes) to pointlike ones.
37→4 The role of Compactification. M10 = M × K .
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The torus T 2 arising from a lattice of C
τ

1
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Complex structure and Kähler structure deformations
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The attractor geometry
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The IIB ”duality frame”

1 M-theory

2 IIB String Theories

3 Type IIB Supergravity in 10D

4 Type IIB Supergravity in 4D

27→3 We take the tree level two derivative low energy action of the
massless fields of IIB String Theory. This means that we consider
the effective action for these fields to leading order in the string
coupling constant (gs) and the inverse string tension (α′).

37→4 We deduce the 4D massless spectrum of type IIB String
Theory after compactification on a six dimensional space K . Now
we take K = T 6. The 10D fields produce 4D descendants by
decomposing them according to the harmonic forms basis
determined by the geometry of K .
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Effective low energy 4D field content in the IIB picture

Geometry: M × K now : K = T 2 × T 2 × T 2 or T 6

1 Coordinates of M: ξ1, ξ2, ξ3, ξ4

2 gµν(ξ) ↔ describing the 4D spacetime geometry of M

3 za(ξ), a = 1, . . . h2,1(K ) ↔ volume preserving fluctuations of
K

4 Gab(ξ) ↔ metric on the space of deformations M of K .

5 F I
µν(ξ), I = 0, 1, . . . h2,1(K ) ↔ Maxwell-type fields

6 NIJ(τ(ξ)) ↔ coupling depending on the deformation fields

h2,1 ≡ dimH2,1(K ,C)

For T 2 × T 2 × T 2 and T 6 respectively we have

h2,1 = 3, h2,1 = 9
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The bosonic part of the 4D Effective Action.STU model.

For the STU model we have merely three scalar fields and four
Maxwell type fields F I

µν(ξ) (I = 0, 1, 2, 3).

za(ξ) = xa(ξ)− iya(ξ), ya(ξ) > 0, a = 1, 2, 3

These scalar fields are sometimes called S ,T ,U fields, hence the
name of the model.

S =
1

8πGN

∫
d4ξ

√
|g |{−R

2
+ Gab∂µz

a∂νz
bgµν

+ IIJF I
µνFJµν +RIJF I

µν
∗FJµν}+ . . .
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STU model

Gab =
δab

(2ya)2

RIJ =


2x1x2x3 −x2x3 −x1x3 −x1x2

−x2x3 0 x3 x2

−x1x3 x3 0 x1

−x1x2 x2 x1 0

 ,

IIJ = −y1y2y3


1 +

(
x1
y1

)2
+

(
x2
y2

)2
+

(
x3
y3

)2
− x1

y2
1

− x2

y2
2

− x3

y2
3

− x1

y2
1

1
y2
1

0 0

− x2

y2
2

0 1
y2
2

0

− x3

y2
3

0 0 1
y2
3


Our aim is to solve the Euler-Lagrange equations arising from this
action under special conditions. 7→Black Hole Solutions
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Extremal Black Hole Solutions

The solutions we are searching for are

1 Static

2 Spherically symmetric

3 Asymptotically Minkowski

4 Extremal

5 Supersymmetric (BPS)

The solutions we find are of extremal Reissner-Nordström type.
Supersymmetric solitons.
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If we take the ansatz for the space-time metric

ds2 = gµν(ξ)dξ
µdξν = −e2U(r)dt2 + e−2U(r)

(
dr2 + r2dΩ2

)
and introduce a spherically symmetric ansatz also for the
gauge-fields F I with electric and magnetic charges qI and pI and
employing the new variable % ≡ 1

r we get the action (T ≡
∫

dt is

the elapsed time and dot denotes d
d%)

S4D/T =
1

2GN

∫ ∞

0
d%

(
U̇2 + Gab ż

aż
b

+ GNe2UVBH

)

VBH =
1

2

(
pI qI

) (
(R+RI−1R)IJ −(RI−1)JI
−(I−1R)IJ (I−1)IJ

) (
pJ

qJ

)
.

We also have the constraint.

U̇2 + Gab ż
aż

b − GNe2UVBH = 0
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Equations of motion for the scalar fields

The equations derived from this effective action describe the
RADIAL dynamics of the space-time warp factor and the
fluctuating extra dimensions in the near horizon %→∞ limit.
Extremization of the effective Lagrangian with respect to the warp
factor and the scalar fields yields the Euler-Lagrange equations

Ü = GNe2UVBH , z̈a + Γa
bc ż

b żc = GNe2U∂aVBH .

In these equations the dots denote derivatives with respect to %.
These radial evolution equations taken together with the constraint
determine the structure of static spherically symmetric extremal
black hole solutions in the STU model.
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Supersymmetric (BPS) solutions

Note that due to supersymmetry we have also fermion fields in the
effective Lagrangian which is supersymmetric under
transformations that can be written schematically as

δB = f (F ), δF = g(B)

For classical solutions we have to set F = 0. However, this not
makes δF = 0. If we also impose this condition then this yield a
further constraint on the B bosonic fields. Such solutions of the
Euler Lagrange equations are called supersymmetric.

Define the central charge Z

Z =
1√

8y1y2y3
(q0 +zaqa−z1z2p3−z2z3p1−z3z1p2 +z1z2z3p0)
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Supersymmetric (BPS) solutions. Attractors.

S. Ferrara and R. Kallosh, Phys. rev. D54, 1514 (1996)
By virtue of SUSY the equations of motion will be of first order

U̇ = −
√

GNeU |Z|

ża = −2
√

GNeUG ab∂b|Z|

Then solutions of these equations (our black hole solutions) are
supersymmetric solitons.
One shows that |Z(%)| is a monotonically decreasing function
converging to a minimum. The fixed point is determined from

˙|Z| → 0, as %→∞

Assuming that lim%→∞Z(%) ≡ Z∗ 6= 0 we get

%−1e−U(%) →
√

GN |Z∗|
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The near horizon geometry

Since as r → 0 we have e−U →
√

GN |Z∗|/r then the near horizon
geometry from

ds2 = −e2Udt2 + e−2U(dr2 + r2dΩ2)

is

ds2 ' − r2

GN |Z∗|2
dt2 +

GN |Z∗|2

r2
dr2 + GN |Z∗|2dΩ2

Let R2 ≡ GN |Z∗|2 and u ≡ R2/r then we get

ds2 = R2

(
−dt2 + du2

u2

)
+ R2dΩ2

Hence the near horizon geometry is AdS2 × S2 with the radius of
curvature of both spaces are the same up to a sign.
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The macroscopic Black Hole Entropy

R2 = GN |Z∗|2

S =
A

4GN
=

4πR2

4GN
= π|Z∗|2

Note: due to supersymmetry we have the BPS bound
GNMBPS = |Z∗|, and extremality is related to the saturation of the
BPS condition √

GNMBPS = |Z∗|

Note: Z∗ is depending on the charges pI , qI and the horizon
values of the scalar fields i.e. za(0). The charges are quantized,
however the za(0) can be changed continuously. It is an
undesirable thing if we would like to interpret S as an object
”counting states”. Hence it is desirable to find a means of relating
somehow za(0) to the charges.
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The Attractor Mechanism. Attractor Equations.

It can be shown that in the supersymmetric case the solutions of
the equations of motion i.e. the flow

za(r), r ∈ [0,∞], a = 1, 2, 3

describes an attractor in moduli space. This means that
independent of the asymptotic values of the scalar fields , i.e. the
values za(∞), the solutions flow to the attractor value

za
∗ (qI , p

I ) ≡ za(0)

obtained from the extremization of the BPS mass with respect to
the scalar fields

∂

∂za
|Z(r)| = 0

As a result of this the black hole entropy will be a function of
the charges.
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The attractor geometry
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Defining a charge dependent three-qubit state

M. J. Duff: Phys. Rev. D76 025017 (2007)

|Γ〉 =
∑

k,j ,i=0,1

Γkji |kji〉, |kji〉 ≡ |k〉U ⊗ |j〉T ⊗ |i〉S

(
p0, p1, p2, p3

−q0, q1, q2, q3

)
=

(
Γ000, Γ001, Γ010, Γ100

Γ111, Γ110, Γ101, Γ011

)
The main observation then was that for supersymmetric black
holes in units ~ = c = k = 1 we have

S = π
√
−D(Γ)

where D is Cayleys hyperdeterminant known from three-qubit
entanglement.
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An example for a charge combination which is not SUSY
(NBPS)

R. Kallosh and A. Linde, Phys. Rev. D73 104033 (2006)

|Γ〉 = |000〉+ |111〉, p0 = 1, q0 = −1, (NBPS)

|Γ〉 = |000〉−|011〉−|101〉−|110〉),−p0 = q1 = q2 = q3 = −1, (BPS)

D(|ψ〉) ≡ ψ2
000ψ

2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

011ψ
2
100

− 2(ψ000ψ001ψ110ψ111 + ψ000ψ010ψ101ψ111

+ ψ000ψ011ψ100ψ111 + ψ001ψ010ψ101ψ110

+ ψ001ψ011ψ110ψ100 + ψ010ψ011ψ101ψ100)

4 (ψ000ψ011ψ101ψ110 + ψ001ψ010ψ100ψ111)
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Real states. STU: on shell SL(2,R)⊗3 symmetry!

The new feature of the classification of SLOCC entanglement
types for three ”rebits” under the group GL(2,R)⊗3 is that the
usual GHZ-class splits into two classes with representatives

|GHZ 〉− =
1

2
(|000〉 − |011〉 − |101〉 − |110〉), D < 0

|GHZ 〉+ =
1

2
(|000〉+ |011〉+ |101〉+ |110〉), D > 0

|GHZ 〉+ = (H ⊗ H ⊗ H)|GHZ 〉, H =
1√
2

(
1 1
1 −1

)

|GHZ 〉− = (J ⊗ J ⊗ J)|GHZ 〉, J =
1√
2

(
1 i
1 −i

)
|GHZ 〉 =

1√
2
(|000〉+ |111〉)
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Defining a charge and moduli dependent three-qubit
”state”

P. L.: Phys. Rev. D74 024030 (2006)

Let

Sa ≡
1√
2ya

(
za −1
−za 1

)
= USa ≡

1√
2

(
i −1
i 1

)
1√
ya

(
ya 0
−xa 1

)
,

then define a new three-qubit ”state” as

|ψ(r)〉 =(S3(r)⊗ S2(r)⊗ S1(r))|Γ〉
=(U ⊗ U ⊗ U)(S3(r)⊗ S2(r)⊗ S1(r))|Γ〉.

Now

VBH(r) =
1

2
||ψ(r)||2
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BPS STU Black Holes and three-qubits

Note: for r →∞ we have Minkowski space-time (asymptotically
flat limit)

for r → 0 we have AdS2 × S2 space-time (near horizon limit)

The GHZ components of |ψ(r)〉 have special meaning as the
central charge

ψ000(∞) = −ψ111(∞) = Z

|ψ000(0)|2 = |ψ111(0)|2 = GNM2
BPS

Since our black hole solution is a soliton interpolating between two
max. supersymmetric vacuum solutions and we also have the
saturation of the BPS bound

√
GNMBPS = |Z|, we can regard

MBPS as the mass of the black hole.
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”Distillation”

Let us define

ρ =
1

2
(|000〉〈000|+ |111〉〈111|)

then

GNM2
BPS = 〈ρ〉ψ∗ ≡ 〈ψ∗|ρ|ψ∗〉

where for the calculation of |ψ∗〉 ≡ |ψ(0)〉 the za
∗ ≡ za(0) attractor

values are needed

za
∗ =

(ξ · η)a − i
√
−D(Γ)

(ξ · ξ)a

Plugging in these values we get for the entropy

S = π〈ρ〉ψ∗ = π
√
−D(Γ)

”Distillation” of GHZ-like ”states”? ↔ Attractors?
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The form of ψ(r) at the horizon

|ψ(0)〉 = (−D(Γ))1/4
(
e iα|000〉 − e−iα|111〉

)

tanα =
√
−D(Γ)

p0

2p1p2p3 + p0(p0q0 + p1q1 + p2q2 + p3q3)
=

p0

p̂0

This is a GHZ-like state.
Note, that this is valid merely for BPS black holes for which
D < 0. For non BPS ones the states on the horizon are special
cases of graph states. They are again complex ones but satisfying
reality conditions corresponding to the real class with D > 0.
Then

S = π
√
|D(Γ)|
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Attaching special role to qubits again

By chosing the first, second or third qubit one can introduce three
sets of real four vectors, e.g. by chosing the first we can define

ξ
(1)
I =


Γ000

Γ010

Γ100

Γ110

 , η
(1)
J =


Γ001

Γ011

Γ101

Γ111

 I , J = 0, 1, 2, 3

(
p0, p1, p2, p3

−q0, q1, q2, q3

)
=

(
Γ000, Γ001, Γ010, Γ100

Γ111, Γ110, Γ101, Γ011

)

(ξ · η)1 ≡ ξ
(1)
I g IJη

(1)
J
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Some notation

Ma(r) =
1

ya(r)

(
1 xa(r)

xa(r) (xa(r))2 + (ya(r))2

)
∈ SL(2,R)

Γa =
1√
−D(Γ)

(
(ξ · ξ)a (ξ · η)a
(ξ · η)a (η · η)a

)
∈ SL(2,R)

Define

g(Ma(r), Γa) ≡ −1

2
Tr (Ma(r)σ2Γσ2)

then for

M =

(
T − X Y

Y T + X

)
we have

g(M,M) = X 2 + Y 2 − T 2,

hence the space of such matrices equipped with g becomes
isomorphic to 2⊕ 1 dimensional Minkowski space.
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Attractors from vanishing concurrence

P. L. and Szilárd Szalay: Phys. Rev. D83, 045005 (2011)
In three-qubit entanglement Cayley’s hyperdeterminant is related
to the physical notion monogamy and not entropy. We have

τ123(Γ) = 4|D(Γ)|, S = π
√
−D(Γ)

How to tackle this?!

τab(ψ(r)) = τ123(Γ) (g(Mc(r), Γc) + 1) (g(Mc(r), Γc)− 1)

From this it can be shown that the Wootters concurrence is
vanishing if and only if the BPS attractor equations hold.
Since according to CKW we have

τ123 = τ1(23) − τ12 − τ13, and cyclic permutations

Hence at the horizon τ123 = τ1(23) = τ2(13) = τ3(12). Now it is OK.
since τa(bc) is the linear entropy (Tsallis entropy).
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BPS attractors

M
a(r)

Γa

X

Y

T
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Non BPS attractors

M
a(r)

Γa

X

Y

T
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”Qubits from extra dimensions”

Main idea: Wrapped membranes around homology cycles of
extra dimensions should give rise to qubits.
L. Borsten et. al. Phys. Rev. Lett. 100 251602 (2008)

”To wrap or not to wrap that is the qubit” (M. J. Duff).

One can make this idea precise by obtaining simple entangled
systems from the cohomology of the extra dimensions.

P. L.: Phys. Rev. D82, 125020 (2011)

Wrapped brane configurations with different winding numbers are
known to give rise to charges of both electric and magnetic
type in our the 4D low energy world. Such winding configurations
account for the microstates of certain elementary black hole
solutions.
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STU Black Holes as four qubit systems

Can we put in the warp factor e2U(r) to an extra SL(2,R)? Yes:
provided we are enlarging the allowed set of solutions to
stationary , non extremal black holes!

E. Bergshoeff et.al.: Nucl. Phys. B812 343 (2009)

P. L.: Phys. Rev. D82 026003 (2010)

STU black hole solutions in this picture correspond to geodesics
on the moduli space SO(4, 4)/SL(2,R)⊗4. Such solutions are
classified in terms of conserved Noether charges. It turns out that
the classification of Noether charges can be mapped to the
classification of complex SLOCC classes for four qubits.

Borsten et.al.: Phys. Rev. Lett. 105 100507 (2010)

For the media hype of this paper see the blog etc. links in
arXiv:1005.4915
”String Theory Finally Does Something Useful”
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Conclusions. Questions.

1 Where are the ”States”?

2 Is it ”Quantum”?

3 Where are the subsystems being ”Entangled”?

4 What is it good for?
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Conclusions. ”Answers”

1

S = π〈ρ〉ψ∗
However: Is it a macroscopic manifestation of some genuine
degenerate state describing microstates? (ADS/CFT, BH
entropy as entanglement entropy etc.)

2 It is known that type IIB quantum effects can be studied via
studying only classical geometry. It is also known that the
intrinsically quantum phenomenon of entanglement appears
to be crucial for the emergence of classical geometry (see e.g.
ER=EPR).

3 In the STU model three tori are ”entangled” . Interestingly
the three copies of SLOCC groups are special cases of the so
called U-duality groups relating different string theories.

4 For example for constructing new pure state multipartite
measures of entanglement.
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Péter Lévay The Black-Hole/Qubit ”Correspondence”



Conclusions. ”Answers”

1

S = π〈ρ〉ψ∗
However: Is it a macroscopic manifestation of some genuine
degenerate state describing microstates? (ADS/CFT, BH
entropy as entanglement entropy etc.)

2 It is known that type IIB quantum effects can be studied via
studying only classical geometry. It is also known that the
intrinsically quantum phenomenon of entanglement appears
to be crucial for the emergence of classical geometry (see e.g.
ER=EPR).

3 In the STU model three tori are ”entangled” . Interestingly
the three copies of SLOCC groups are special cases of the so
called U-duality groups relating different string theories.

4 For example for constructing new pure state multipartite
measures of entanglement.
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