Zsonglőrködés kvantumrészecskékkel Kutatásaink a 2012. évi Nobel díj fényében

Domokos Péter

Wigner Fizikai Kutatóközpont, Magyar Tudományos Akadémia

MAFIHE Téli Iskola, ELTE TTK, 2014. február 3., Budapest

Fázismanipuláció a fény-anyag kölcsönhatásban

Tartalomjegyzék

- 1. Kölcsönható kvantum részecskék
 - mikrohullámú CQED, Ramsey interferométer
 - Schrödinger-macska állapotok
 - kvantumállapot mérés és preparálás

2. Atomok mozgása fény hatására

- Fabry-Pérot interferométer
- optikai rezonátorok
- hűtés koherens fotonszórással
- Atom-atom kölcsönhatás a sugárzási mezőn keresztül
 - atomok önszerveződése fénykristályba
 - kvantumfázisátalakulás

Serge Haroche, 1998 Ecole Normale Supérieure

Kísérleti kvantummechanika, Nobel díj 2012.

Egyedi kvantumrendszerek manipulációja

"Serge Haroche and David J. Wineland have independently invented and developed methods for measuring and manipulating individual particles while preserving their quantum-mechanical nature, in ways that were previously thought unattainable."

Kölcsönhatás

- kétrészecskés rendszer
- kvantumosan koherens csatolás
- kontrollált és megfigyelhető

from www.nobelprize.org

Rezonátoros kvantumelektrodinamika

Szupravezető Nb tükör

Rezonátor

- $T_{\text{cav}} = 130 ms$ (hideg kell T = 0.8 K)
- $Q = 4.2 \times 10^{10}, \mathcal{F}/\pi = 10^9$ round-trip

- $\omega_A = 51.099 \text{ GHz}, T_{at} = 30 ms$
- hangolhatóság (Stark effektus)
- sebességszelekció, nincs hűtés
- detektálás állapotszelektív ionizációval

Kísérleti elrendezés

Haroche-Raimond group, Lab. Kastler Brossel, ENS Paris)

Jaynes-Cummings model

$$H_{\rm JC} = \hbar\omega_{\rm C}a^{\dagger}a + \hbar\omega_{\rm A}\sigma_{\rm z} + \hbar\Omega(a^{\dagger}\sigma_{\rm -} + \sigma_{\rm +}a)$$

Jaynes-Cummings spectrum

 $H_{\rm JC} = \hbar\omega_{\rm M}a^{\dagger}a + \hbar\omega_{\rm A}\sigma_z + \hbar\Omega(a^{\dagger}\sigma_{-} + \sigma_{+}a)$

Felöltöztetett állapotok

Mi történik, ha a két inga hossza nagyon különböző?

Nemrezonáns fény-anyag kölcsönhatás

nincs energiacsere, de az energiaszintek eltolódnak

$$H/\hbar = \omega_M a^{\dagger} a + \omega_A \sigma_z + \frac{\Omega^2}{\delta} \left[|e\rangle \langle e| \otimes (a^{\dagger} a + 1) - |g\rangle \langle g| \otimes a^{\dagger} a \right]$$

- hullámfüggvények fázisa eltolódik a kölcsönhatás következtében
- ► atom → EM mező: törésmutató
- ► EM mező → atom: potenciál

Hullámfrontosztás Young interferométer

Nyalábosztás Michelson interferométer

Interferométer az elektron hullámfüggvényre

Mach-Zehnder

Ramsey (1989 Nobel díj)

Fotonmérés elnyelés nélkül

Fotonszámmérés és preparálás

Kvantumállapot tervezés

Hilbert tér feltérképezése

- [Janszky, Domokos, Ádám, Physical Review A (1993)]: Coherent states on a circle and quantum interference
- [Szabó, Ádám, Janszky, Domokos, Physical Review A (1996)]:
 Construction of quantum states of the radiation field by discrete coherent-state superpositions

Dekoherencia időfelbontott mérése

Statisztikus kvantumfizikai elméletek

- dekoherencia időfelbontott mérése: tesztelhetőség
- kvantumtrajektória módszer (MCWF)
- szemléletes kép + numerikus hatékonyság
- ▶ [Vukics, Janszky, Domokos, J. Phys. B (2005)] \Rightarrow C++QED

Dekoherencia

Kvantumállapot stabilizálása visszacsatolással

Fázismanipuláció a fény-anyag kölcsönhatásban

Tartalomjegyzék

- 1. Kölcsönható kvantum részecskék
 - mikrohullámú CQED, Ramsey interferométer
 - Schrödinger-macska állapotok
 - kvantumállapot mérés és preparálás
- 2. Atomok mozgása fény hatására (1997 Nobel díj)
 - Fabry-Pérot interferométer
 - optikai rezonátorok
 - hűtés koherens fotonszórással
- Atom-atom kölcsönhatás a sugárzási mezőn keresztül
 - atomok önszerveződése fénykristályba
 - kvantumfázisátalakulás

Optikai rezonátoros QED

Fabry-Pérot interferométer

 $U = U_0 + U_1 + U_2 + \dots$

Önkonzisztens stacionárius megoldás

$$E_{r} = \sqrt{R}e^{i\theta}E_{in} + i\sqrt{T}E_{cav}'$$

$$E_{cav} = i\sqrt{T}E_{in} + \sqrt{R}e^{-i\theta}E_{cav}'$$

$$E_{cav}' = e^{i\phi}\sqrt{R}e^{i\theta}E_{cav}$$

$$\frac{|E_{cav}|^{2}}{|E_{in}|^{2}} = \left|\frac{i\sqrt{T}}{1 - (1 - T)e^{i\phi}}\right|^{2} = \frac{T^{-1}}{1 + \left(\frac{\mathcal{F}}{\pi}\right)^{2}\sin^{2}\frac{\phi}{2}}$$
Finesse: $\mathcal{F} = \frac{\pi\sqrt{1 - T}}{T}$
Rezonancia \leftrightarrow módus (Lorentz)

$$n_{\rm cav} = rac{2\kappa j_{
m in}}{(\omega - \omega_{
m v})^2 + \kappa^2}$$

 $\kappa={\it Tc}/{\it 2l}$, $\phi=\omega{\it 2l}/{\it c}$, $j_{
m in}=\epsilon_0|{\it E}_{
m in}|^2{\it cA}/\hbar\omega$

Egyetlen atom detektálása

Kérdések

- Hogyan mozog az atom amikor a rezonátorban van?
- Meg lehet-e növelni a kölcsönhatás idejét (csapdázás)?
- Lehet-e az atom zajos mozgását hűteni?

Erős csatolás atom és módus között

Semiclassical model

$$\dot{x} = rac{
ho}{M}$$

 $\dot{
ho} = -\hbar U_0 |lpha|^2 \nabla f^2(x) + \xi_{
ho}$

$$\dot{\alpha} = \eta - i \left(U_0 f^2(x) - \Delta_C \right) \alpha - \left(\kappa + \Gamma_0 f^2(x) \right) \alpha + \xi_\alpha$$

 \rightarrow force depends not only on the position but also on the velocity \implies cavity cooling \Rightarrow + fluctuations needed

Polarizability

$$\begin{split} U_0 &= -\frac{\omega_{\rm C}}{V} \chi' \approx \frac{g^2}{\Delta_A} \\ \Gamma_0 &= -\frac{\omega_{\rm C}}{V} \chi'' \approx \gamma \frac{g^2}{\Delta_A^2} \end{split}$$

Atom és mező korrelált mozgása

Zajmentes mozgás példa

Sisyphus interpretation

Cooling can be attributed to the time lag with which the field adapts itself to the momentary position of the atom.

Atomok optikai hűtése rezonátorban

Elmélet

Domokos, Vukics, Ritsch, Phys. Rev. Lett. 2004

Nussmann et al, Nature Phys, 2006

Fázismanipuláció a fény-anyag kölcsönhatásban

Tartalomjegyzék

1. Kölcsönható kvantum részecskék

- mikrohullámú CQED, Ramsey interferométer
- Schrödinger-macska állapotok
- kvantumállapot mérés és preparálás

2. Atomok mozgása fény hatására

- Fabry-Pérot interferométer
- optikai rezonátorok
- hűtés koherens fotonszórással

Atom-atom kölcsönhatás a sugárzási mezőn keresztül

- atomok önszerveződése fénykristályba
- kvantumfázisátalakulás

Mágneses-optikai csapda, Bose-Einstein kondenzáció

Atom-atom coupling I. Cavity pump

Significant?

single-atom strong coupling regime

 $g > \kappa, \gamma$

• far detuning $\Delta_A \gg \gamma$

$$\frac{g^2}{\Delta_A}\approx U_0>\kappa$$

Many-body enhancement

$$U_0 \longrightarrow N U_0$$

Atom-atom coupling II. Atom driving

Features of the cavity mediated interaction

- radiative \implies long-range (infinite range)
- not binary \implies global coupling ($\propto N$)
- ▶ cavity radiation field is lossy ⇒ driven open system, out of equilibrium

Kollektív instabilitás

homogén eloszlás

pumpa erősség / hőmérséklet > kritikus érték

 \downarrow

λ-periódikus rend

Atomok önszerveződése optikai rezonátorban

[Domokos, Ritsch, Phys Rev Lett (2002)]

[Asboth,Domokos,Ritsch,Vukics, PRA (2005)]

➔ nemegyensúlyi fázisátalakulás, globális csatolás

Továbblépés: T = 0 kvantum tartomány, BEC

MIT kísérlet

Hamburg, Imperial College,... [Arnold, Baden, Barrett, PRL (2012 október)] Self-Organization Threshold Scaling for Thermal Atoms Coupled to a Cavity

Bose-Einstein kondenzátum optikai rezonátorban

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) + \int \hat{\Psi}^{\dagger}(x) \left[-\frac{\hbar}{2 m} \frac{d^2}{dx^2} + Ng_c \hat{\Psi}^{\dagger}(x) \hat{\Psi}(x) + U_0 \,\hat{a}^{\dagger} \hat{a} \cos^2(kx) + i\eta_t \cos kx (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \right] \hat{\Psi}(x) dx,$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} \cos^2(kx) + i\eta_t \cos kx (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} \cos^2(kx) + i\eta_t \cos kx (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \right] \hat{\Psi}(x) dx,$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

$$H = \omega_C \,\hat{a}^{\dagger} \hat{a} + i\eta (\hat{a}^{\dagger} e^{-i\omega t} - \hat{a} e^{i\omega t}) \left[\hat{\Psi}(x) dx \right],$$

а

$$\frac{d}{dt}\hat{\rho} = -\frac{i}{\hbar} \left[H, \hat{\rho}\right] \\ + \kappa \left(2 \, a \, \hat{\rho} \, a^{\dagger} - a^{\dagger} \, a \, \hat{\rho} - \hat{\rho} \, a^{\dagger} \, a\right)$$

Time scales

$$\omega_R = \hbar k^2/2m$$
 recoil frequency
 κ cavity resonance
 $NU_0, N\eta_t$ tunable interaction

two-mode approx

Ultracold limit of self-organization

Fourier-expansion of the matter wave

$$g_{c} = 0 \implies N = c_{0}^{\dagger}c_{0} + c_{i}^{\dagger}c_{1} = \text{const}$$

$$\hat{\Psi}(x) = \frac{1}{\sqrt{L}}\hat{c}_{0} + \sqrt{\frac{2}{L}}\hat{c}_{1}\cos kx + \sqrt{\frac{2}{L}}\hat{c}_{2}\cos 2kx + \dots$$

$$\hat{S}_{x} = \frac{1}{2}(c_{i}^{\dagger}c_{0} + c_{0}^{\dagger}c_{i})$$

$$\hat{S}_{y} = \frac{1}{2i}(c_{i}^{\dagger}c_{0} - c_{0}^{\dagger}c_{i})$$

$$\hat{S}_{z} = \frac{1}{2}(c_{i}^{\dagger}c_{i} - c_{0}^{\dagger}c_{0})$$

Realization of the Dicke-model

$$H/\hbar = -\delta_C a^{\dagger}a + \omega_R \hat{S}_z + iy(a^{\dagger} - a)\hat{S}_x/\sqrt{N} \left(+ua^{\dagger}a\left(\frac{1}{2} + \hat{S}_z/N\right) \right)$$

$$\delta_C = \Delta_C - 2u < 0$$

$$u = N U_0 / 4$$

$$y = \sqrt{2N} \eta_t$$

 $\omega_{\rm B} = \hbar k^2 / m$

tunable parameters $y_{\rm crit} = \sqrt{-\delta_C \omega_R}$

kHz frequency range

Phase transition – thermodynamic limit

Experimental mapping of the phase diagram

From: [Baumann, Guerlin, Brennecke, Esslinger, Nature (2010)]

First calculated: [Nagy, Szirmai, Domokos, EPJD (2008)]

Konklúzió

- hullámfüggvény (elektrodinamika, kvantummechanika, ...)
- fázis
- fázismanipuláció eszköze: interferométerek
 SPECIK:
- Rezonátoros kvantumelektrodinamika
- Semleges atomok lézeres hűtése és csapdázása

Kvantummérés Lendület csoport

