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Egyedi kvantumrendszerek manipulációja
„Serge Haroche and David J. Wineland have
independently invented and developed
methods for measuring and manipulating
individual particles while preserving their
quantum-mechanical nature, in ways that
were previously thought unattainable.”

Kölcsönhatás

I kétrészecskés rendszer
I kvantumosan koherens

csatolás
I kontrollált és megfigyelhető

Ioncsapda
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Controlling single photons in a trap
Serge Haroche and his research group employ a di#erent method to reveal the mysteries of the quantum 
world. In the laboratory in Paris microwave photons bounce back and forth inside a small cavity 
between two mirrors, about three centimetres apart. The mirrors are made of superconducting material 
and are cooled to a temperature just above absolute zero. These superconducting mirrors are the world’s 
shiniest. They are so re$ective that a single photon can bounce back and forth inside the cavity for almost 
a tenth of a second before it is lost or absorbed. This record-long life-time means that the photon will 
have travelled 40,000 kilometres, equivalent to about one trip around the Earth. 

During its long life time, many quantum manipulations can be performed with the trapped photon. 
Haroche uses specially prepared atoms, so-called Rydberg atoms (after the Swedish physicist Johannes 
Rydberg) to both control and measure the microwave photon in the cavity. A Rydberg atom has a 
radius of about 125 nanometers which is roughly 1,000 times larger than typical atoms. These gigantic 
doughnut-shaped Rydberg atoms are sent into the cavity one by one at a carefully chosen speed, so 
that the interaction with the microwave photon occurs in a well controlled manner. 

The Rydberg atom traverses and exits the cavity, leaving the microwave photon behind. But the interac-
tion between the photon and the atom creates a change in the phase of quantum state of the atom: if you 
think of the atom’s quantum state as a wave, the peaks and the dips of the wave become shifted. This 
phase shift can be measured when the atom exits the cavity, thereby revealing the presence or absence 
of a photon inside the cavity. With no photon there is no phase shift. Haroche can thus measure a single 
photon without destroying it.

A laser is used to suppress the ion’s 
thermal motion in the trap, and to 
control and measure the trapped ion.

Electrodes keep the beryllium 
ions inside a trap. 

electrode

lasers

electrode

ions

electrode

Figure 2. In David Wineland’s laboratory in Boulder, Colorado, electrically charged atoms or ions are kept inside a trap by surrounding 
electric fields. One of the secrets behind Wineland’s breakthrough is mastery of the art of using laser beams and creating laser pulses. 
A laser is used to put the ion in its lowest energy state and thus enabling the study of quantum phenomena with the trapped ion.

Rezonátor
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With a similar method Haroche and his group could count the photons inside the cavity, as a child 
counts marbles in a bowl. This may sound easy but requires extraordinary dexterity and skill because 
photons, unlike ordinary marbles, are destroyed immediately by contact with the world outside. 
Building on his photon counting methods, Haroche and collaborators devised methods to follow the 
evolution of an individual quantum state, step-by-step, in real time. 

Paradoxes of quantum mechanics
Quantum mechanics describes a microscopic world invisible to the naked eye, where events occur contrary 
to our expectations and experiences with physical phenomena in the macroscopic, classical world. Physics 
in the quantum world has some inherent uncertainty or randomness to it. One example of this contrary 
behaviour is superposition, where a quantum particle can be in several di#erent states simultaneously. We 
do not normally think of a marble as being both ‘here’ and ‘there’ at the same time, but such is the case if it 
were a quantum marble. The superposition state of this marble tells us exactly what probability the marble 
has of being here or there, if we were to measure exactly where it is. 

Why do we never become aware of these strange facets of our world? Why can we not observe a 
superposition of quantum marble in our every-day life? The Austrian physicist and Nobel Laureate 
(Physics 1933) Erwin Schrödinger battled with this question. Like many other pioneers of quantum 
theory, he struggled to understand and interpret its implications. As late as 1952, he wrote: “We never 
experiment with just one electron or atom or (small) molecule. In thought-experiments we sometimes 
assume that we do; this invariably entails ridiculous consequences...”.

In order to illustrate the absurd consequences of moving between the micro-world of quantum physics 
and our every-day macro-world, Schrödinger described a thought experiment with a cat: Schröding-
er’s cat is completely isolated from the outside world inside a box. The box also contains a bottle of 
deadly cyanide which is released only after the decay of some radioactive atom, also inside the box.  

Rydberg atoms – roughly 1,000 times 
larger than typical atoms – 
are sent through the cavity one by one. 
At the exit the atom can reveal 
the presence or absence of a photon 
inside the cavity.

microwave photons

superconducting 
niobium mirrors

2.7 cm

Photons bounce back and forth inside 
a small cavity between two mirrors for 
more than a tenth of a second. Before it 
disappears the photon will have travelled 
a distance of one trip around the Earth.

Figure 3. In the Serge Haroche laboratory in Paris, in vacuum and at a temperature of almost absolute zero, the microwave photons 
bounce back and forth inside a small cavity between two mirrors. The mirrors are so reflective that a single photon stays for more 
than a tenth of a second before it is lost. During its long life time, many quantum manipulations can be performed with the trapped 
photon without destroying it. 

from www.nobelprize.org
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Mirror technology

• Copper substrates
diamond machining 

~shape accuracy 300 nm ptv
~roughness 10 nm 

Toroidal surface Î single mode 

• 12 µm Niobium layer
Cathode plasma sputtering
CEA, Saclay

[E. Jacques, B. Visentin, P. Bosland]

S. Kuhr et al, APL, 90, 164101
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Cavity assembly

piezospiezos

atomsatoms

5 cm
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Preparation of a coherent state and Q measurement

• Coherent state injection

– Intense pulse generated by a classical microwave source
• Sent in the spacing between cavity mirrors
• Couples into the cavity mode through the diffraction loss channels

– Injected photon numbers adjustable between much less than one and 
millions

– Phase coherent injection

• Cavity lifetime measurement

– Inject a large field and probe it with resonant atoms
• Measure atomic response vs time
• Direct measurement of the cavity damping time

24

An unprecedented quality factor

• Extremely high Q’s. 
– Damping times > 65 ms

• best cavity damping time Tc=130 ms !!
– best mirrors so far
– 1.1 billion bounces on the mirrors 
– 40000km travel between mirrors

• plenty of time for atom-field interaction
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•Q = Z Tc = 4.2 � 1010

•F = 4.6 � 109

S. Kuhr et al, APL 90, 164101 (2007)
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I Tcav = 130ms (hideg kell T = 0.8K)
I Q = 4.2 × 1010, F /π = 109 round-trip

Circuláris Rydberg atom
n = 51

1250 A

Large circular orbit
Strong coupling to microwaves
Long radiative life time (30 ms)
level tunability by Stark effect
Easy state selective detection

Circular Rydberg atoms

They are prepared in static electric and
magnetic fields  by a pulsed sequence of

optical and radiofrequency photon
absorption, in an adiabatic process

By controlling the first laser beam intensity,
0.3 circular atom on average per pulse is prepared

Poissonian atom number distribution:
P(0) = 0.74; P(1) = 0.22; P(2) = 0.045 ..... 

Useful events

n = 51

1250 A

Large circular orbit
Strong coupling to microwaves
Long radiative life time (30 ms)
level tunability by Stark effect
Easy state selective detection

Circular Rydberg atoms

They are prepared in static electric and
magnetic fields  by a pulsed sequence of

optical and radiofrequency photon
absorption, in an adiabatic process

By controlling the first laser beam intensity,
0.3 circular atom on average per pulse is prepared

Poissonian atom number distribution:
P(0) = 0.74; P(1) = 0.22; P(2) = 0.045 ..... 

Useful events

I ωA = 51.099 GHz, Tat = 30ms
I hangolhatóság (Stark effektus)
I sebességszelekció, nincs hűtés
I detektálás állapotszelektív ionizációval

Kísérleti elrendezés

Haroche-Raimond group, Lab. Kastler Brossel, ENS Paris)

Jaynes-Cummings model

HJC = ~ωCa†a + ~ωAσz + ~Ω(a†σ− + σ+a)



Jaynes-Cummings spectrum
HJC = ~ωMa†a + ~ωAσz + ~Ω(a†σ− + σ+a)

Felöltöztetett állapotok
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Figure 1: The levels of the non coupled system (left) and the dressed levels
(right)
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δ = ωA − ωM
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Erős csatolás

Ω−1 = 3 µs

γ−1 = 32ms

κ−1 = 133ms

Kettős inga

Rabi-oszcilláció
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Single atom spontaneous emission enhancement

• Goy et al, 1983

– Spontaneous emission acceleration for a 
single Rydberg atom in a  cavity

– x 530 acceleration !
• Quantitative agreement with Purcell

6

Single atom spontaneous emission inhibition

• Kleppner, Hulet et al 1985

– No spontaneous emission in a
waveguide below cut-off

– An atom excited forever

Inhibition

Field
ionization

Cut-off

d
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The micromaser

• D. Meschede, H. Walther, 85
– Cumulative emissions in the cavity in the strong coupling regime

– A maser with less than one atom at a time in the cavity
– A new type of quantum oscillator. Role of quantum fluctuations
– Atom-cavity interaction overwhelms dissipative processes (extremely

long cavity damping time): First incursion in the strong coupling
regime

– Extended to two-photon transitions (Brune, 87)
8

The quantum Rabi oscillation

• Brune et al 1996

– Visceral evidence of strong coupling regime

Atom Cavity
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1

|ωA−ωC | � Ω, κ, γ

∆ =
Ω2

δ

I nincs energiacsere, de az energiaszintek eltolódnak

H/~ = ωMa†a + ωAσz +
Ω2

δ

[
|e〉〈e| ⊗ (a†a + 1) − |g〉〈g| ⊗ a†a

]
I hullámfüggvények fázisa eltolódik a kölcsönhatás következtében
I atom→ EM mező: törésmutató
I EM mező→ atom: potenciál



Interferométerek: fázis −→ intenzitás

Hullámfrontosztás
Young interferométer

Nyalábosztás
Michelson interferométer

Interferométer az elektron hullámfüggvényre

Mach-Zehnder Ramsey (1989 Nobel díj)

|e>

|f>
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Ramsey interferometer

• An atomic interferometer to probe atom-cavity interaction

– Two classical S/2 pulses before and after interaction with C

– An atomic state interferometer analogous to a Mach-Zehnder optical
interferometer

g

e

R1 R2

26

Ramsey interferometer

• Atomic state transformations  (initial state g)
– R1

– R2

– Ramsey interferometer phase Ir tuned via
• Relative phase of the two microwave pulses
• Transient Stark shift applied on the atomic transition between

Ramsey pulses

• Final probability for a detection in e
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Ramsey fringes

• A high contrast interference pattern

– Phase of the fringes reveals perturbations of the atomic states
• A sensitive probe of the atom-cavity interaction
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Experimental control

• Full computer control

– Programmation of complex (but fixed) experimental sequences
• Atomic sample preparations
• Control of electric fields
• Ramsey pulses
• Field ionization

– Tens of thousands of individual events over few seconds !
– Timing accuracy 10 ns
– Read out of ionization detection events and post-processing of data

– A (very) complex software (S. Kuhr, S. Deleglise, I. Dotsenko)



Fotonmérés elnyelés nélkül

0 photon

1 photon

The principle of single photon
detection by Ramsey interferometry

Atom follows two interfering pathes between R 1 and
R2.

If 1 photon in C, the amplitude of the g path is π phase
shifted and so are the Ramsey fringes

Setting ν to a fringe extremum correlates in principle
perfectly atom state (meter) to photon number. 

Fotonszámmérés és preparálás

n=0 . . . 7

3 

In order to obtain more information, we repeat the process and 
send a sequence of atoms across C. This results in a step-by-step 
change of the photon number distribution. From one atom to the 
next, we vary I. Calling I(k) the detection angle for the kth atom 
and j(k) its spin reading, the photon number distribution after N 
atoms becomes:  

 � � � � � �0

1

cos ( ) ( )
N

N
k

P n
P n A B n k j k

Z
) � I

 

 � � Sª º¬ ¼�  (2) 

where Z enforces normalization. For an efficient decimation, we 
alternate between detection directions nearly coinciding with the 
vectors associated with q non-orthogonal |+p² states. Each atom 
has a chance to reduce the probability of a photon number 
different from the one decimated by its predecessor. After a finite 
number of steps, numerical simulations predict that a single n 
value (modulo 2q) survives. 

Observing the field-state collapse 
We have applied this procedure to a coherent microwave field at 
51.1 GHz stored in an ultrahigh-Q Fabry–Pérot cavity made of 
niobium-coated superconducting mirrors28. Our set-up is described 
in ref. 29. The cavity has a very long damping time Tc = 0.130 s. It 
is cooled to 0.8 K (average thermal photon number nt = 0.05). The 
field is prepared by coupling a short microwave pulse into C (by 
way of diffraction on the mirrors’ edges28). Its photon number 
distribution and average photon number, n0 = 3.82 ± 0.04, are 
inferred from the experimental data (see below). Our single-
photon-sensitive spin-clocks are circular Rydberg atoms of 

rubidium. They cross C successively, separated on average by 
2.33 × 10-4 s. Parameters are adjusted to realize a ~S/4 clock shift 
per photon (Methods), corresponding to eight positions of the spin 
on the Bloch sphere (Fig. 1b). This configuration is adapted to 
count photon numbers between 0 and 7. For n0 = 3.82, the 
probability for n t 8 is 3.5%. 

Four phases Ii (i = a, b, c, d), corresponding to directions 
pointing approximately along the spin states associated with n = 6, 
7, 0, 1, are used, in random order, for successive atoms (Methods). 
A sequence of j values can be decoded only when combined with 
the corresponding phase choices, in analogy with the detection 
basis reconciliation of quantum key distribution protocols36. 
Figure 2a shows the data from the first 50 detected atoms, 
presented as (j, i) doublets, for two independent detection 
sequences performed on the same initial field. 

From these real data, we compute the products of functions 
3N(n) = �(k = 1…N) [A + Bcos(n) � Ii(k) + j(k)S)]. The A, B, ) and 
Ii values are given by Ramsey interferometer calibration 
(Methods). The evolutions of 3N(n), displayed as functions of n 
treated as a continuous variable, are shown in Fig. 2b for N 
increasing from 1 to 50. The 3N(n) functions converge into 
narrow distributions whose widths decrease as more information is 
acquired. These functions are determined uniquely by the 
experimental data. Their evolution is independent of any a priori 
knowledge of the initial photon distribution. The data sequence 
itself, however, depends of the unknown state of the field, which 
the measurement reveals. 

Figure 2 Progressive collapse of field 
into photon number state. a, Sequences 
of (j, i) data (first 50 atoms) produced by 
two independent measurements. b, 
Evolution of �N(n) for the two sequences 
displayed in a, when N increases from 1 to 
50, n being treated as a continuous variable 
(integral of 3N(n) normalized to unity). c, 
Photon number probabilities plotted versus 
photon and atom numbers n and N. The 
histograms evolve, as N increases from 0 
to 110, from a flat distribution into n = 5 
and n = 7 peaks. 
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quantum-mechanical measurement of the field photon
number, on a single realization of this system.

A. Simple analysis: Evolution
of a "pure state" field

As an example of such a field, let us mention the
coherent Glauber state [22] corresponding to a complex
amplitude a, with c„coefficients given by

e —]a) /2 n
(30)

After interaction with an atom with velocity v, the
state of the atom-field system is readily obtained by su-
perposition of Eq. (23) type solutions:
~ill'"" +"' ))=g g c„$(v, n'y, e)~a, n) .

n a
a=e,f

(31)

This is obviously an entangled state which cannot be
expressed as a product of atom and field contributions:
the nonreso nant atom-field interaction builds strong
correlations between the two parts of the coupled subsys-
tems.
According to the postulates of a quantum measure-

ment, the detection of the atom in level a (a =e or f) pro-
jects this state into g„c„b,(n, v;yo, e)~a, n ), resulting in
the system "disentanglement" and the collapse of the
field into a coherent superposition of Fock states with

Let us assume that the field in the cavity is described
by a "pure" superposition of photon number states,
which, in interaction representation, is

(29)

amplitudes given within a normalization factor by
c„b,(n, v'gp 6). The photon-nuinber distribution is thus
essentially multiplied by an oscillating function of n,
~b, (n, v;yo, e)~ W. e show in Fig. 5 how the photon-
number distribution is transformed after detection of an
atom in state f or e. The photon numbers for which the
fringe function is closest to zero are efficiently decimated,
since the measurement process gives us an information
"incompatible" with these numbers. This decimation
process is at the heart of the QND scheme studied in this
article: if the process is repeated on the same field with a
succession of atoms having different velocities, which are
detected randomly in levels e or f according to the corre-
sponding quantum-mechanical probabilities, other pho-
ton numbers are suppressed and we conceive easily that
the decimation goes on until only one photon number is
left. The field state is finally projected on an intensity
eigenstate, even though no energy has been exchanged
between the atoms and the field. The change in the field
photon probability distribution has been achieved only
through a dissipation free "information-gathering" pro-
cess, which appears as a perfect quantum measurement of
the field intensity.
This analysis, which contains the essence of our

method, is only qualitative. It does not describe the mea-
surement effects on an incoherent field, such as a thermal
field, for which a "pure state" description is inadequate.
Even for an initially "pure state, " the above approach is
incomplete because it cannot account for interactions
with undetected atoms whose effect is, as discussed
below, to transform the pure state into a statistical mix-
ture. Also, it is not adapted to describe field relaxation
which, in a real cavity, adds its effect to the
measurement-induced processes. For a quantitative
description of the method, we have to adopt a density-
matrix description.

atom detected in f:

B. Evolution of the field density operator
under continuous atomic detection

IL
24

atom detected in e:

(a)
n

(b) (c)

FIG. 5. Illustration of the basics of the DAP-QND method,
showing the transformation of the photon-number distribution
produced by a single atom detection event. The initial distribu-
tion, displayed in (a), is a Poisson law with n =10. It is multi-
plied by the oscillating fringe function

~ b, (n, v;y e) ~,O
represented vs n in (b), for both the f and e detection outcomes
(U =vp gp=0 e=m. /2). In the resulting distributions (c), pho-
ton numbers closest to the "dark fringes" have been decimated.
The patterns obtained after detection of the atom in f and e are
"complementary. "

p'""s+"' '= g ~e, n )pk.„„(e,n'~,
n, n'

(32)

which, after the coherent evolution of the atom-field sys-
tem, becomes

Assume that a field has been prepared in a state de-
scribed by a density matrix po inside a cavity whose Q
factor is first supposed to be infinite. A sequence of
atoms is sent through the cavity. The velocity and the
quantum state of each atom are determined by the atomic
detector I.C. To account for finite detection efficiency,
we also allow for some "unread" events in which the
atomic internal energy and velocity are not measured. As
in other similar problems dealing with continuous photo-
detection [23,24], each atom measurement provides infor-
mation on the cavity field and changes the field density
operator, po becoming p, after the first atom . - - pk after
the kth atom. The state of the atom-field system at the
entry of atom k+1 is described by the total density
operator ~(field+atom).



Kvantumállapot tervezés
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Koherens állapotok
szuperpozíciója

squeezing, sub-Poissonian photon statistics, oscillation in
photon-number distribution, and amplitude squeezing. There
are several nonlinear optical processes leading to
Schrödinger-cat states @8–11#; similar states for molecular
vibrations can be produced in Franck-Condon transitions
@29#.
The simplest Schrödinger-cat states are the even and odd

coherent states

ua ,6&5c6~ ua&6u2a&), c65@262exp~22uau2!#21/2.
~19!

Although the coherent states are the most classical of all pure
states of light, their simple superposition described by Eq.
~19! shows remarkable nonclassical features. The even
Schrödinger-cat state is squeezed; its maximum squeezing is
reached at Re(a)'0.8 @14#. Pairs of coherent states can also
show amplitude squeezing, sub-Poissonian statistics, and os-
cillation in photon-number distribution. All these effects
emerge due to the quantum interference between the con-
stituent coherent states. The Wigner function of the even
coherent state with real a5x ,

W~b!5
c1
2

p
$exp~22ub2xu2!1exp~22ub1xu2!

12exp~22ubu2!cos@4xIm~b!#%, ~20!

leads us to better understanding of the interference pattern.
The first two terms in the Wigner function of Eq. ~20! cor-
respond to the Gaussian bells of the constituent coherent
states while the third term describes an interference fringe
pattern between the bells ~see Fig. 1!. We note that although
two coherent states with strongly different arguments are al-
most orthogonal to each other, the maximal amplitude of the
interference fringe remains two times larger than the ampli-
tudes of the constituent coherent states, independently from
the distance between them. Constructive or destructive quan-
tum interference between the coherent states in the discrete

superpositions results in various nonclassical states as we
will show in the following sections.

IV. SUPERPOSITION OF COHERENT STATES ALONG A
STRAIGHT LINE

In this section we present a method for constructing dis-
crete coherent-state superpositions along a straight line in
phase space to approximate nonclassical states of light.
For deriving a discrete coherent-state superposition ucN&

approximating a given state uC& it is convenient to start from
the one-dimensional representation of the state.
Accordingly, let us consider the following discrete super-

position of coherent states along the real axis of phase space

ucN&5 (
k51

N

Fkuxk&. ~21!

Here the coherent states uxk& are chosen to be equally
distributed at distances d along the real axis around the co-
herent state ux0& that belongs to the center of the correspond-
ing one-dimensional distribution function F(x) of the state
uC& defined in Eq. ~6!, i.e.,

xk5x01S k2
N11
2 D d , k51, . . . ,N . ~22!

The coefficients Fk are derived from the one-dimensional
continuous distribution function:

Fk5cF~xk!, ~23!

where c is the normalization constant.
The scalar product of the superposition state ucN& and the

desired state uC& measures the accuracy of the approxima-
tion. It is convenient to introduce the misfit parameter e in
the form

e512 z^CucN& z2

512U(
k50

N

FkE
2`

`

F*~x !exp@2~x2xk!2/2#dxU2. ~24!

This parameter tends to zero as the approximation improves.
The Wigner functions of the states ucN& can also demon-

strate how close the approximating discrete coherent-state
superposition is to the desired state:

WN~a!5
2e22uau2

p (
k ,l51

N

Fl*Fke2~xk1xl!
2/212~axl1a*xk!. ~25!

As an example, we consider displaced squeezed number
states. These states can be obtained by applying the unitary
squeezing operator

Ŝ~z!5expS 12 z*â22
1
2 z â†2D , z5reiu ~26!

and the displacement operator

FIG. 1. Wigner function of a Schrödinger-cat state consisting of
two coherent states put along the real axis of phase space. Between
the Gaussian bells of the individual coherent state’s fringes can be
seen emerging from the quantum interference.
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superposition is increased. The coverage parameter h was
always optimized for all N values. In Fig. 6~a! at N54 co-
herent states and at h opt50.245 the resulting state is rather
different from the desired one. Figure 6~b! shows a state
approximating a superposition state at coverage hopt50.59
and N510 producing good approximation however, the in-
terference fringe system in the middle is still confused. Fig-
ure 6~c! shows an improved interference fringe system re-
sembling the annuli of the desired amplitude-squeezed state
at N514 and at hopt50.785. In Fig. 6~d! the discretization
covers the whole circle (hopt51) at N520, the resulting
state is practically perfect.
Further on we will demonstrate that any quantum state

with known number-state expansion can be approximated by
discrete coherent-state superpositions on a circle.
First let us consider quantum states which have a finite

number of Fock-state coefficients cn different from zero. For
these states one can find a distribution function FR(f) from
Eq. ~17!. A typical example can be the positive binomial
state @36# defined as

ub ,M &5 (
n50

M

cn
Mun&, ~45!

where

FIG. 5. The misfit e for the coherent-state superposition ucN& on
the circle with radius R53 approximating the amplitude-squeezed
state u1,16,3& versus the coverage h of two adjacent coherent states
in the superposition along the real axis. The numbers N of the
coherent states in the superpositions are indicated at the respective
curves.

FIG. 6. Wigner functions of the coherent-state superpositions on the circle of radius R53 approximating the amplitude-squeezed state
u1,16,3&. The optimized coverages hopt are equal to 0.245 ~a!, 0.59 ~b!, 0.785 ~c!, 1.0 ~d!. The numbers N of the constituent coherent states
are equal to 4 ~a!, 10 ~b!, 14 ~c!, 20 ~d!.
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Hilbert tér feltérképezése

I [Janszky, Domokos, Ádám, Physical Review A (1993)]:
Coherent states on a circle and quantum
interference

I [Szabó, Ádám, Janszky, Domokos, Physical Review A (1996)]:
Construction of quantum states of the radiation
field by discrete coherent-state superpositions

Dekoherencia időfelbontott mérése

Páratlan Schrödinger-macska állapot
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Figure 3 | Reconstructing Schrödinger cat states. The WFs of even (a) and odd (b) SC states (in units of 2/S) with nm=3.5 and F=0.37S are reconstructed
following state preparation. The same detuning (G��S�= 51 kHz) and interferometer phase (I� ��)���G��S��are used for state preparation and reconstruction. The
number of sampling points is §500, with §2,000 atoms detected at each point, in 400 realizations. The dimension of the Hilbert space used for reconstruction is 11
The small insets present for comparison the theoretical WFs computed in the case of ideal preparation and detection of the atomic state superpositions
Decoherence during state preparation is taken into account. The maximum theoretical values of the classical components and interference fringes are close to 0.5
and 1, respectively. In the reconstructed states, the quantum interference is smaller, mainly due to imperfections of the Ramsey interferometer which affect the ca

,

.

.

t
state preparation (and not its reconstruction). c, Reconstructed WF of the field prepared in C when the state of the preparation atom is not read-out (statistical
mixture of two classical fields). In the inset: corresponding theoretical WF. 

Figure 3a and b shows the WFs of the even and odd cat states 

obtained from the same coherent field (nm = 3.5 and F� �0.37�S). 
They exhibit two well-separated positive peaks associated to the 
classical components, whose slightly elongated shape is due to the 
phase-shift non-linearity neglected above. The “size” of each SC 

state, defined as the squared distance between peaks, is d2§4nm
 sin2F 

= 11.8 photons. Between these peaks, oscillating features with 
alternating positive and negative values are the signatures of the SCs 
quantum interference. The even and odd SCs have nearly identical 
classical components and only differ by the sign of their quantum 
interference. The theoretical WFs , taking the SC preparation non-
linearity into account, are shown for comparison in the insets. The 

fidelity of both cat states (overlap between the reconstructed U and 
the expected one) is F = 0.72. It is mainly limited by imperfections 
of the R1 and R2 pulses applied to the preparation atom, which 
reduce the contrast of the quantum interference feature. If the 

preparing atom is detected without discriminating |e² and |g², we get 
the statistical mixture of even and odd SCs whose WF is shown on 
Fig. 3c. This is, equivalently, a statistical mixture of the two 
classical components. Although non-classical states of propagating 
light with similar WFs have been observed23, here well-separated 
classical components of a field can be identified in a reconstructed 
state and unambiguously distinguished from their quantum 
interference term. 

Schrödinger cats are paradigmatic states for exploring 
decoherence, the phenomenon accounting for the transition between 
quantum and classical behaviours5. Our reconstruction method 
allows us to study this process. Immediately after state preparation, 

we realize the D(D) translation and detect a sequence of atoms 
divided into 4 ms-long time-windows. These atoms record Pe-Pg 
versus time, without modifying the dynamics of this quantity. We 
average the results of realizations corresponding to the same 
translation and time window, and then repeat the process for 

different ҏvalues of D. This directly records the evolution of the 
translated states, rather than the one of the state itself. The two 
dynamics are however closely related. Decoherence acting on the 

initial density operator U(0) turns it at time t into U(t) = L[U(0),t] 
where L is the decoherence super-operator14 which can be shown to 

satisfy the relation: D(D�exp[-t/2Tc]) L[U(0),t] D(-D�exp[-t/2Tc]) = 

L[D(D)U(0)D(�D),t]. Translating the initial field by D and letting it 
evolve during time t is equivalent to letting it evolve during that 

time and translating it by D exp(-t/2Tc). We thus analyze the data 
obtained at time t as if they corresponded to a translation rescaled by 
exp(-t/2Tc). This is more efficient than leaving the field evolve 
before translating it, because we exploit all the data of a long 
sequence, instead of recording only a short time window for each 

delay. We have experimentally checked the equivalence between the 
two methods by comparing the results for one time delay and 
verified that the reconstructed SC states are, within noise, 
undistinguishable. 

 Figure 4a shows four snapshots of an odd SC WF at increasing 
times which clearly reveal decoherence. While the classical 
components have hardly decayed, the interference feature has 
vanished after 50 ms, turning the initial state into a statistical 
mixture similar to that shown in Fig. 3c. A complete movie of a SC 
WF evolution is presented as supplementary information. By 
subtracting the WF of the even and odd SCs corresponding to the 
same preparation sequence, we isolate their interference features by 
cancelling their equal, classical, parts. A movie showing the 
progressive vanishing of this difference is also provided as 
supplementary information. 

It is also instructive to observe decoherence directly on the 
density matrix. In order to distinguish the classical coherence of 
each SC component from their mutual quantum coherence, we 
consider the mathematically translated reconstructed density matrix 

UT�= U(-Eexp(iF)) whose classical components are close to the vacuum 

|0² and to |-2iEsinF². This formal translation leaves unchanged the 
distance of the two classical components in the phase plane as well 
as their mutual coherence. 

In Fig. 4b, we present the density matrix UT(t) of the SC state in 
Fig. 4a, reconstructed for the same times. In each frame, the 
diagonal elements present two maxima around n = 0 and n = 11. The 

off-diagonal elements�are of two kinds. Those for which |n-n’| § �11 
describe the classical coherence of the non-vacuum component and 
remain nearly unchanged on the observed timescale. The off-
diagonal terms in the first row and column of the matrix 

(respectively U70n and U7n0) initially exhibit a bell-shaped variation 
with n, centred at n ~11. These terms correspond to the SC quantum 
coherence responsible for the oscillations observed in the WF. Their 
fast decay is the signature of decoherence.  

The measured quantum coherence of the even and odd cats is 
plotted versus time in Fig. 4c. A common exponential fit yields a 
decoherence time Td = 17 ± 3 ms. A simple analytical model of 
decoherence14 predicts Td = 2Tc/d

2 = 22 ms at T = 0 K, reduced to24 
Td = 2Tc/(d

2(1+2nb)+4nb) = 19.5 ms when including thermal 
background at T = 0.8 K, in good agreement with the measured 
value. A movie of a smaller SC (d2 = 8) yields Td = 28 ms, 
illustrating the dependence of the decoherence time on the cat 
size5,14. Earlier experiments have studied the relaxation of photonic22 
and atomic25

 SCs by observing specific features of their states, but 
this experiment is the first to realize a movie of decoherence on a 
fully reconstructed SC. 

[Deléglise et al., Nature (2007)]

Statisztikus kvantumfizikai elméletek

I dekoherencia időfelbontott mérése: tesztelhetőség
I kvantumtrajektória módszer (MCWF)
I szemléletes kép + numerikus hatékonyság
I [Vukics, Janszky, Domokos, J. Phys. B (2005)]⇒ C++QED

Dekoherencia

4 

We have shown that atoms interacting with a cavity field can be 
used to engineer and reconstruct a wide variety of photonic states 
and to study their evolution. Pushing one step further, we plan to use 
information provided by the atoms to implement feedback 
procedures and preserve the quantum coherence over longer time 
intervals26. We will also extend these studies to fields stored in two 

cavities. Atoms will be used to entangle the cavity fields into non-
local quantum states27,28, reconstruct these states and protect them 
against decoherence by quantum feedback operations. 
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Figure 2 | Individual quantum feedback trajectories. Two feedback runs lasting 164 ms 

(2,000 loop iterations) stabilizing |nt = 2² (left column) and |nt = 3² (right column). The phase-

shift per photon I0 = 0.256 S allows K to discriminate n values between 0 and 7. For nt = 2, the 

Ramsey phase is Ir = �0.44 rad, corresponding to nearly equal e and g detection probabilities 

when n = 2. For nt = 3, two Ramsey phases Ir,1 = �0.44  rad and Ir,2 = �1.24 rad are alternatively 

used, corresponding to equal e and g probabilities when n = 2 and n = 3, respectively. 

a, Sequences of qubit detection outcomes. The detection results are shown as blue downwards 

bars for g and red upwards bars for e. Two-atom detections appear as double length bars. 

b, Estimated distance between the target and the actual state. c, Applied D-corrections (shown 

in log-scale as sgn(D)log|D|). d, Photon number probabilities estimated by K: P(n = nt) is in 

green, P(n < nt) in red, P(n > nt) in blue. e, Field density operators U in a Fock-state basis 

estimated by K at four different times marked by arrows. 

Sayrin et al.Nature2011
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Figure 1 | Scheme of the quantum feedback set-up. An atomic Ramsey interferometer 

(auxiliary cavities R
1
 and R

2
) sandwiches the superconducting Fabry-Perot cavity C resonant at 

51 GHz and cooled at 0.8 K (mean number of blackbody photons: 0.05). The pulsed classical 

source S’ induces S�� pulses resonant with the |g²o|e² transition in R
1
 and R

2
 (with relative 

phase I
r
) on the velocity selected (v = 250 m/s) Rydberg atom qubits prepared by laser 

excitation from a Rubidium atomic beam in B. The field-ionization detector D measures the 

qubits in the e/g basis with a 35% detection efficiency and a few percent error rate (see 

Supplementary Methods). The actuator S feeds C by diffraction on the mirror edges. The 

controller K (CPU-based ADwin Pro-II system) collects information from D to determine the 

real translation amplitude D�applied by S. It sets the S-pulse duration through a pin-diode 

switch A (63 Ps pulse for |D_ = 0.1) as well as a 180° phase-shifter ĭ controlling the sign of D. 

Kvantumos küldönc
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FIG. 2. Single realization of the feedback experiment with
nt = 4. The frames present versus time, from top to bottom,
the detected sensor states (upwards bars for e, downwards
bars for g), the distance d to the target, the actuators sent
by K (red bars for emitters, blue bars for absorbers) and the
photon number distribution p(n) inferred by K (color/gray
scale) together with its average value (solid black line).

The free experimental parameters are the phase-shift
per photon Φ0, the Ramsey phase ϕr, the actuator inter-
action times tj , the number of sensor and control sam-
ples Ns and Nc and the corresponding average num-
ber of atoms per sample ms and mc. The phase-shift
Φ0 = 0.252 × π rad, corresponding to an atom-cavity de-
tuning δ/2π = 244 kHz, is set close to π/4 allowing K to
distinguish among eight different photon numbers [11].
The Ramsey interferometer phase ϕr = π/2−Φ0nt is set
by fine Stark-tuning of the atomic frequency. It corre-
sponds ideally to πs(j|nt) = 1/2 and provides the best
sensitivity to photon number measurements around nt.
We chose ms = 1.3 and mc = 0.5 (the lower value
for the control samples reduces the probability of two-
photon emission/absorption). The other parameter val-
ues, te = 1.6π/Ω0

√
nt + 1, tg = 2.4π/Ω0

√
nt, Ns = 12

and Nc = 4 are optimized by numerical simulations.

The value of te is close to 2π/Ω0

√
nt + 1. This cor-

responds to a “trapping state” condition [16], for which
an emitting actuator would ideally leave the target state
invariant. Due to the finite contrast of the experimental
Rabi oscillations, the emission probability does not cancel
at the trapping state condition. Choosing a slightly lower
value for te maintains a relatively small unwanted emis-
sion probability for n = nt while optimizing the proba-
bility of correcting emissions when n = nt − 1. Similar

FIG. 3. Probabilities of the choices made by K for the con-
trol atoms (emitter: dashed red line; sensor: solid green line;
absorber: dash-dot blue line) as a function of the estimated
mean photon number n (data inferred from 4000 realizations
of the experiment over 140 ms with nt = 4).

arguments explain qualitatively the value of tg, slightly
larger than that corresponding to a trapping state con-
dition.

Figure 2 shows the data of a single realization of the ex-
periment with nt = 4. It presents, as a function of time,
the detected sensor states, the estimated distance d, the
controller decisions to send emitter or absorber actuator
samples, and finally the evolution of the photon num-
ber distribution estimated by K together with its average
value. Starting from vacuum at t = 0, emitting samples
are repeatedly sent until d comes close to zero. The pho-
ton number distribution is then peaked on n = nt, with
p(nt) ≈ 0.8−0.9. Around t = 50 ms, a downwards quan-
tum jump to n = 3 triggers the sending of few emitter
samples, which rapidly restore the target state. Close to
t = 70 ms, another downwards jump is over-corrected,
leading to n = 5. Absorbers are then sent until restora-
tion of the target. Four thousand similar trajectories
have been recorded for each value of nt from 1 to 7.

In order to get an intuitive insight into the workings of
the feedback, we plot for nt = 4 in Fig. 3 the fractions of
emitters, absorbers and sensors chosen by K in the control
samples, versus the mean photon number n estimated at
a given time. The mere inspection of this figure leads to
a simple rule. When n < nt − 0.4 (resp. n > nt + 0.6),
K essentially programs emitter (resp. absorber) samples
and for nt − 0.4 ≤ n ≤ nt + 0.6 it rather decides to
send sensor samples, which do not affect n on average,
but contribute to reducing ∆n and thus d. The domain
of n values in which sensors are preferred has a δn ≈ 1
width and is centered on a value slightly larger than nt,
reflecting the fact that field relaxation alone reduces n.
The fractions of actuators and sensors vary rapidly at
the boundary of these domains, in narrow ranges of n
values. Our feedback algorithm thus essentially operates
according to the simple intuitive procedure outlined in
the introduction. When it estimates that n falls outside
the δn = 1 range around nt, it concludes that a quantum
jump is likely to have happened and attempts to correct
for it by adding or subtracting a photon.

The performance of the feedback procedure is obtained

Zhou et al.Phys. Rev. Lett.,2012
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Optikai rezonátoros QED

Fabry-Pérot interferométer
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Egyetlen atom detektálása

Max-Planck Intézet, Garching, 1999

rezonátor
F ≈ 106

Kérdések

I Hogyan mozog az atom amikor a rezonátorban van?
I Meg lehet-e növelni a kölcsönhatás idejét (csapdázás)?
I Lehet-e az atom zajos mozgását hűteni?

Erős csatolás atom és módus között

γ
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Semiclassical model
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2∇f2(x) + ξp

α̇ = η − i
(
U0f2(x) −∆C

)
α −

(
κ + Γ0f2(x)

)
α + ξα

→ force depends not only on the position but also on
the velocity =⇒ cavity cooling⇒ + fluctuations
needed

Polarizability

U0 = −
ωC

V
χ′ ≈

g2

∆A

Γ0 = −
ωC

V
χ′′ ≈ γ

g2

∆2
A



Atom és mező korrelált mozgása

Zajmentes mozgás példa

∆C = −4κ
U0 = −3κ

}
|∆C − U0 | = κ

η = 1.5κ

γ = 0.1κ (negligible)

100 200 300 4000

κ−1

single atom moving in 1D

time  [units of       ]

field intensity

momentum

position

Sisyphus interpretation
Cooling can be attributed to the time lag
with which the field adapts itself to the
momentary position of the atom.

t< t>

Atomok optikai hűtése rezonátorban

Futószalag geometria

Elmélet
Domokos, Vukics, Ritsch, Phys. Rev. Lett. 2004
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Nussmann et al, Nature Phys, 2006



Fázismanipuláció a fény-anyag kölcsönhatásban

Tartalomjegyzék

1. Kölcsönható kvantum részecskék
I mikrohullámú CQED, Ramsey interferométer
I Schrödinger-macska állapotok
I kvantumállapot mérés és preparálás

2. Atomok mozgása fény hatására
I Fabry-Pérot interferométer
I optikai rezonátorok
I hűtés koherens fotonszórással

3. Atom-atom kölcsönhatás a sugárzási
mezőn keresztül

I atomok önszerveződése fénykristályba
I kvantumfázisátalakulás

Mágneses-optikai csapda, Bose-Einstein
kondenzáció

Bose-Einstein kondenzátum (1995)
Nobel-díj 2001

mágneses optikai csapda

Ideális kvantum objektum
I mozgási & elektronikus

alapállapot
I kollektív erősítés a

csatolásban

párologtatásos hűtés



Atom-atom coupling I. Cavity pump

Spatially dependent detuning
!L

!C

cos(kx)

laser

!L

!0
C

cos(kx)

laser

!L

!C

cos(kx)

laser

!L

!0
C

cos(kx)

laser

Significant?
I single-atom strong coupling regime

g > κ, γ

I far detuning ∆A � γ

g2

∆A
≈ U0 > κ

I Many-body enhancement

U0 −→ N U0

Atom-atom coupling II. Atom driving

Destructive interference

+1

-1

d = (2n + 1)�/2

cos(kx)

lézer

Fx = 0

Constructive interference

+1

-1

d = 2n�/2

cos(kx)

lézer

Fx , 0 , superradiance

Features of the cavity mediated interaction
I radiative =⇒ long-range (infinite range)

I not binary =⇒ global coupling (∝ N)

I cavity radiation field is lossy =⇒ driven open system, out of equilibrium



Kollektív instabilitás

homogén eloszlás

standing−wave pump

trap potential from density fluctuations

pumpa erősség / hőmérséklet > kritikus érték

↓

λ-periódikus rend

standing−wave pump

trap potential

Atomok önszerveződése optikai rezonátorban
Atomok trajektóriái

Bragg planes

[Domokos, Ritsch, Phys Rev Lett (2002)]

[Asboth,Domokos,Ritsch,Vukics, PRA (2005)]

−→ nemegyensúlyi fázisátalakulás, globális csatolás

Továbblépés: T = 0 kvantum tartomány, BEC

MIT kísérlet
[Black, Chan, Vuletic, PRL (2003)]

Hamburg, Imperial College,...

[Arnold, Baden, Barrett, PRL (2012

október)] Self-Organization Threshold

Scaling for Thermal Atoms Coupled to a

Cavity



Bose-Einstein kondenzátum optikai rezonátorban

H = ωC â†â + iη(â†e−iωt − âe iωt ) +

∫
Ψ̂†(x)

[
−
~

2 m
d2

dx2
+ NgcΨ̂†(x)Ψ̂(x)

+ U0 â†â cos2(kx) + iηt cos kx(â†e−iωt − âe iωt )

]
Ψ̂(x)dx,

dissipation and noise (kB T = 0)

d
dt
ρ̂ = −

i
~

[H, ρ̂]

+ κ
(
2 a ρ̂ a† − a† a ρ̂ − ρ̂ a† a

)

Time scales

ωR = ~k2/2m recoil frequency

κ cavity resonance

NU0,Nηt tunable interaction

Ultracold limit of self-organization
Fourier-expansion of the matter wave

gc = 0 =⇒

Ψ̂(x) =
1
√

L
ĉ0 +

√
2
L

ĉ1 cos kx +

√
2
L

ĉ2 cos 2kx + . . .

[
ci , c

†

i

]
= 1 i = 0, 1, 2, . . .

two-mode approx
N = c†0c0 + c†i c1 = const

Ŝx =
1
2

(c†i c0 + c†0ci)

Ŝy =
1
2i

(c†i c0 − c†0ci)

Ŝz =
1
2

(c†i ci − c†0c0)

Realization of the Dicke-model

H/~ = −δC a†a + ωR Ŝz + iy(a† − a)Ŝx/
√

N
(
+ua†a

(
1
2 + Ŝz/N

))
ωR = ~k2/m

δC = ∆C − 2u < 0

u = N U0/4

y =
√

2Nηt


tunable
parameters

ycrit =
√
−δCωR

kHz frequency range

[Nagy, Kónya, Szirmai, Domokos, PRL (2010)]



Phase transition – thermodynamic limit
Mean field approach

a =
√

Nα0 + δa

ck = e−iµt (
√

Nγk + δck )

two-mode:

γ1 = β γ0 =
√

1 − β2

Critical point

ηt < ηcrit

mode function
cos(kx)

pump laser

BEC

α = 0
β = 0

threshold

y2
c = −ωR

δ2
C + κ2

δC

ηt > ηcrit

outcoupled field

κ

β2 =
δC
u

1 −
√

1 −
u
δC

y2 − y2
c

y2 + uωR


≈

1
2
−

y2
c

2y2
(for u ≈ 0)

both for gs and ss

populations

y/yc

|α
0
|2

|β
0
|2
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Experimental mapping of the phase diagram
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From: [Baumann, Guerlin, Brennecke, Esslinger, Nature (2010)]

First calculated: [Nagy, Szirmai, Domokos, EPJD (2008)]



Konklúzió

I hullámfüggvény (elektrodinamika, kvantummechanika, ...)
I fázis
I fázismanipuláció eszköze: interferométerek

SPECIK:
I Rezonátoros kvantumelektrodinamika
I Semleges atomok lézeres hűtése és csapdázása

Kvantummérés Lendület csoport


