

PÉCSI TUDOMÁNYEGYETEM UNIVERSITY OF PÉCS Dept of Experimental Physics Ifjúság ú. 6, 7624 Pécs, Hungary http://physics.ttk.pte.hu

Az ELI-ALPS nemlineáris optikai fényforrásai

Fülöp József

e-mail: fulop@fizika.ttk.pte.hu

MAFIHE Téli Iskola, Szeged, 2012. február 3.

Tartalom

- Bevezetés: az ELI-ALPS nemlineáris optikai forrásai
- Lézerek frekvenciakonverziója: Nemlineáris optikai alapok
 - Nemlineáris polarizáció
 - Példák
 - Fázisillesztés
- THz-es források
 - THz-es sugárzás keltése és detektálása
 - Optikai egyenirányítás
 - Extrém nagy energiájú THz-es impulzusok előállítása

Az ELI-ALPS berendezés struktúrája

Az ELI-ALPS fényforrásai

... egyedülállóan átfogó spektrum

Az ELI-ALPS fényforrásai

... sokoldalú alkalmazási lehetőségek

Az ELI-ALPS nemlineáris optikai fényforrásai

Lézerek frekvenciakonverziója: Nemlineáris optikai alapok

Nemlineáris optika

- Nemlineáris optikai jelenségek: közeg optikai tulajdonságai megváltoznak fény hatására.
- Ehhez jellemzően lézerfény kell (elég intenzív).
- Másodharmónikus-keltés (Franken et al., 1961), röviddel az első lézer megépítése után (Maiman, 1960).
- Nemlinearitás: közeg válasza az optikai mező térerősségének nemlineáris függvénye.
- Nemlinearitás \rightarrow új frekvenciakomponensek keletkezhetnek.

Hullámegyenlet lineáris közegben

Hullámegyenlet (a Maxwell-egyenletekből, $\mathbf{J}_0 = 0$): $\nabla \times (\nabla \times \mathbf{E}) + \frac{1}{c^2} \frac{\partial}{\partial t^2} \mathbf{E} = -\mu_0 \frac{\partial^2}{\partial t^2} \mathbf{P}$

P(r,t): polarizáció (dipólusmomentum-sűrűség)

P függését E-től az anyagegyenlet adja meg.

• Kis térerősségekre, abszorpciós vonalaktól távoli frekvenciákra a kapcsolat lineáris:

 $\mathbf{P}(\mathbf{r},t) = \varepsilon_0 \chi^{(1)} \mathbf{E}(\mathbf{r},t)$

 $\chi^{(1)}$ elektromos szuszceptibilitás tenzora (dielektromos tenzor), izotróp közegben skalár $\mathcal{E}_r = 1 + \chi^{(1)}$

→ Homogén hullámegyenlet:

$$\nabla^{2}\mathbf{E}(\mathbf{r},t) - \frac{\varepsilon_{r}}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}(\mathbf{r},t) = \mathbf{0}$$

Hasonló egyenlet vezethető le **B**(**r**, *t*)-re is.

Nemlineáris polarizáció

• Nagyobb térerősségekre E szerinti sorfejtéssel (skaláris esetre):

$$P_{i} = \varepsilon_{0} \chi^{(1)} E_{i} + \varepsilon_{0} \chi^{(2)} E_{i}^{2} + \varepsilon_{0} \chi^{(3)} E_{i}^{3} + \dots$$
$$= P_{i}^{(1)} + P_{i}^{(2)} + P_{i}^{(3)} + \dots = P_{i}^{L} + P_{i}^{NL}$$

i = x, y, z

- $\chi^{(1)}$ lineáris szuszceptibilitás
- $\chi^{(2)}$ másodrendű nemlineáris szuszceptibilitás
- $\chi^{(3)}$ harmadrendű nemlineáris szuszceptibilitás ...

$\mathbf{P}^{L} = \mathbf{P}^{(1)}$	lineáris polarizáció		
$\mathbf{P}^{\rm NL} = \mathbf{P}^{(2)} + \mathbf{P}^{(3)} + \dots$	nemlineáris polarizáció		

Nemlineáris polarizáció

Mekkora térerősségekre számottevő a legalacsonyabb (másod-)rendű korrekció?

$$\left|\frac{P^{(2)}}{P^{(1)}}\right| \approx \left|\frac{P^{(n+1)}}{P^{(n)}}\right| \approx \left|\frac{E}{E_{\text{at}}}\right| \qquad \tilde{P}^{(2)}(t) = \epsilon_0 \chi^{(2)} \tilde{E}^2(t)$$

Becslés: a másodrendű korrekció összemérhető a lineáris válasszal, azaz $P^{(2)} \approx P^{(1)}$, ha az *E* külső térerősség az E_{at} atomi térerősség nagyságrendjébe esik.

$$E_{\rm at} \approx \frac{1}{4\pi\epsilon_0} \frac{e}{a_0^2} = 5,14 \cdot 10^9 \text{ V/cm} \qquad \begin{array}{l} e = 1,602 \times 10^{-19} \text{ C} & \text{elemi töltés} \\ a_0 = 0,528 \text{ Å} = 52,8 \text{ pm} & \text{Bohr-sugár} \\ a_0 = 4\pi\epsilon_0 \hbar^2 / me^2 \end{array}$$

 $\chi^{(1)} \sim 1 \text{ kondenzált anyagokra}$ $\chi^{(2)} \sim \chi^{(1)}/E_{at} \qquad \chi^{(2)} \simeq 1.94 \times 10^{-12} \text{ m/V}$ $\chi^{(3)} \sim \chi^{(1)}/E_{at}^2 \qquad \chi^{(3)} \simeq 3.78 \times 10^{-24} \text{ m}^2/\text{V}^2 \qquad \tilde{P}^{(3)}(t) = \epsilon_0 \chi^{(3)} \tilde{E}^3(t)$

Hullámegyenlet nemlineáris közegben

A hullámegyenlet általános alakja:

$$\nabla \times (\nabla \times \vec{E}) + \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = -\mu_0 \frac{\partial^2}{\partial t^2} \vec{P}$$

Ahonnan
$$\vec{P} = \vec{P}^L + \vec{P}^{NL}, \quad \vec{P} = \epsilon_0 \chi \vec{E}, \quad \epsilon_0 \mu_0 = \frac{1}{c^2}$$

felhasználásával

$$\nabla \times (\nabla \times \vec{E}) + \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = -\frac{\chi}{c^2} \frac{\partial^2 \vec{P}^{NL}}{\partial t^2}$$

Innen $\ \epsilon_r = 1 + \chi$ -vel

$$\nabla \times (\nabla \times \vec{E}) + \frac{\epsilon_r}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = -\mu_0 \frac{\partial^2}{\partial t^2} \vec{P}^{NL}$$

Hullámegyenlet nemlineáris közegben

Ha ϵ_r nem változik számottevően a hullámhosszal összemérhető távolságokon, $\nabla \times (\nabla \times \vec{E}) = \nabla (\nabla \vec{E}) - \nabla^2 \vec{E}$ -ben az első tag elhanyagolható. Így $n^2 = \epsilon_r$ felhasználásával:

→ inhomogén hullámegyenlet: (forrás v. "gerjesztés": P^{NL})

$$\nabla^2 \vec{E} - \frac{n^2}{c^2} \frac{\partial^2}{\partial t^2} \vec{E} = \mu_0 \frac{\partial^2}{\partial t^2} \vec{P}^{NL}$$

Frekvenciakétszerezés

x(2)

(second-harmonic generation – SHG)

 $E(t) = Fe^{-i\omega t} + c.c.$ bemenő térerősség

másodrendű nemlineáris polarizáció:

Összeg- és különbségifrekvencia-keltés

(sum-frequency generation – SFG, difference-frequency generation – DFG) $E(t) = F_1 e^{-i\omega_1 t} + F_2 e^{-i\omega_2 t} + c.c.$

$$P^{(2)}(t) = \varepsilon_0 \chi^{(2)} E^2(t)$$

= $\varepsilon_0 \chi^{(2)} \Big[F_1^2 e^{-i2\omega_1 t} + F_2^2 e^{-i2\omega_2 t} + 2F_1 F_2 e^{-i(\omega_1 + \omega_2)t} + 2F_1 F_2^* e^{-i(\omega_1 - \omega_2)t} + \text{c.c.} \Big]$
+ $2\varepsilon_0 \chi^{(2)} \Big[F_1 F_1^* + F_2 F_2^* \Big]$

2ω ₁ , 2ω ₂ :	SHG
$\omega_1 + \omega_2$:	SFG
$\omega_1 - \omega_2$	DFG
$\omega_1 = \overline{0}$:	optikai egyenirányítás (optical rectification – OR)

Megjegyzés:

A lehetséges új frekvenciák közül a gyakorlatban általában legfeljebb csak egynek az intenzitása lesz számottevő.

A nemlineáris polarizáció ugyanis csak az ún. fázisillesztési feltétel (ld. később) teljesülése esetén képes számottevő kimenő intenzitást kelteni.

Alkalmazások – SFG:

fény energiakvantum =
$$hv = \frac{h}{2\pi}\omega = \hbar\omega$$

$$P(\omega_1 + \omega_2) = 2\epsilon_0 \chi^{(2)} E_1 E_2$$

Hangolható koherens ultraibolya (UV) fényforrás

Alkalmazások – DFG: $P(\omega_1 - \omega_2) = 2\epsilon_0 \chi^{(2)} E_1 E_2^*$

fény energiakvantum =
$$hv = \frac{h}{2\pi}\omega = \hbar\omega$$

Hangolható koherens infravörös (IR) fényforrás

- ω₂, ω₃ erősödik!
- F₂ = F₃ = 0 kezdetben

 → ekkor is keletkezhet ω₂, ω₃
 (spontán kétfotonos emisszió v. parametrikus fluoreszcencia)

Alkalmazások – DFG:

Kezdeti feltételek:

 $\omega_1, \omega_2 \text{ erős}, \omega_3 \text{ nincs} \rightarrow \qquad \omega_2, \omega_3 \text{ erősödik} \\ DFG \\ cél: \omega_3 \text{ keltése} \end{cases}$

 ω_1 erős, ω_2 gyenge, ω_3 nincs \rightarrow

 ω_2 , ω_3 erősödik **optikai parametrikus erősítés** – OPA cél: ω_2 erősítése (ω_3 "haszontalan" – *"idler"*) (alterntíva a lézer-erősítés mellett)

optikai parametrikus oszcillátor – OPO (hangolható koherens infravörös fényforrás)

pumpa $\omega_1 = \omega_2 + \omega_3$

Harmadrendű folyamatok

$$E(t) = F_1 e^{-i\omega_1 t} + F_2 e^{-i\omega_2 t} + F_3 e^{-i\omega_3 t} + \text{C.C.} \quad \text{feltevés}$$

$$P^{(3)}(t) = \varepsilon_0 \chi^{(3)} E^3(t) \qquad \tilde{P}^{(3)}(t) = \sum_n P(\omega_n) e^{-i\omega_n t}$$

P⁽³⁾-ban a következő frekvenciák jelennek meg:

Nemlineáris törésmutató

$$E(t) = Fe^{-i\omega t} + c.c. \quad \text{feltevés}$$

$$P^{(3)}(t) = \varepsilon_0 \chi^{(3)} E^3(t)$$

$$= \underbrace{3\varepsilon_0 \chi^{(3)} \left(F^2 F^* e^{-i\omega t} + c.c.\right)}_{\text{nemlineáris járulék}} + \underbrace{\varepsilon_0 \chi^{(3)} \left(F^3 e^{-i3\omega t} + c.c.\right)}_{\text{THG}}$$

$$a \text{ polarizációhoz}$$

$$az \text{ eredeti } \omega \longrightarrow \text{ nemlineáris járulák}} \xrightarrow{\text{nemlineáris járulék}}_{\text{törésmutató}}$$

A harmadrendű nemlineáris polarizáció ω frekvenciájú tagot is tartalmaz. Emiatt a közeg törésmutatója az intenzitástól függően megváltozik. Belátható, hogy a törésmutató az alábbi alakban írható:

$$n = n_0 + n_2 I \qquad \qquad n_2 = \frac{3}{2n_0^2 \epsilon_0 c} \chi^{(3)}$$

- *n*₀ lineáris (azaz alacsony intenzitásokra vonatkozó) törésmutató
- *n*₂ nemlineáris törésmutató
- *I* intenzitás

$$\tilde{E}(t) = \mathcal{E}\cos\omega t$$
 $I = \frac{1}{2}n_0\epsilon_0 c\mathcal{E}^2$

Nemlineáris törésmutató

A nemlineáris törésmutató a nagy intenzitású lézer-alkalmazásoknál fontos tényező.

 Nagy teljesítményű lézerrendszerekben az intenzitást korlátozni kell (nagyobb nyalábátmérővel, lézerimpulzusok időbeli megnyújtásával).
 A korlátot szokás az ún. *B*-integrál segítségével megfogalmazni:

$$E(z,t) = Fe^{i(kz-\omega t)} + C.C.$$

$$= Fe^{i\omega\left(n\frac{z}{c}-t\right)} + C.C.$$

$$B \equiv k_0 \int_0^L \frac{n_2 I(z)}{n_0} dz$$

$$= \frac{2\pi}{\lambda_0} \int_0^L \frac{n_2 I(z)}{n_0} dz$$

$$B \leq 1$$
teljesüljön

Pl.: Ti:zafírra
$$n_0 = 1,76$$

 $n_2 = 3.10^{-20} \text{ m}^2/\text{W}$

Önfókuszálás

- A nagy intenzitású lézernyaláb közepe nagyobb törésmutatót "lát" (ha n₂>0).
- A hullámfrontok középen lemaradnak a nyaláb széléhez képest, ahol kicsi az intenzitás.
- Hullámfront-görbület (hasonlóan, mint lencsén való áthaladásnál).
- A lézernyaláb fókuszálódik, emiatt az intenzitás tovább nő.
- A túl nagy az intenzitás a közeg roncsolódásához vezethet.

Önfókuszálás

A (kontrolált) önfókuszálás sok alkalmazásnál hasznos, pl.:

- filamentáció a spektrum kiszélesítéséhez
- lézerrezonátor longitudinális módusainak fázisszinkronizációja ultrarövid lézerimpulzusok keltéséhez (ún. módusszinkronizáció)

A filamentáció a nyaláb széteséséhez is vezethet.

x-Coordinate (mm)

További nemlineáris optikai folyamatok

Telítődő abszorpció

$$\alpha = \frac{\alpha_0}{1 + I/I_s}$$

Kétfotonos abszorpció

Kényszerített Raman-szórás

Fázisillesztés

Egy nemlineáris optikai folyamat hatásfokát meghatározza:

- nemlineáris szuszceptibilitás
- fázisillesztés

(a keltő és a keltett hullámok közegbeli lineáris terjedésével kapcsolatos)

Fázisillesztés

Fázisillesztés teljesülése esetén:

A nemlineáris polarizáció és az általa keltett elektromágneses hullám fáziskülönbsége állandó marad a közeg egész hosszában.

→ A bemenő hullámok energiája nagy (maximális) hatásfokkal konvertálódik a keltett hulláméba.

Ha nincs fázisillesztés:

A keltett hullám fázisa a közegbeli terjedés során eltolódik a nemlineáris polarizáció fázisához képest (ez utóbbi a gerjesztő hullám fázisához kötött).

→ A közeg elején keltett hullám a közegben haladva nem lesz fázisban valamely más helyen keltett hullámmal.

- → Interferenciájuk nem lesz (maximálisan) erősítő.
- → Alacsonyabb konverziós hatásfok.

Kettőstörésen alapuló fázisillesztés

Kettőstörés: törésmutató függ a polarizációs iránytól

Pl. SHG

$$\Delta k = 2k_1 - k_2$$

= $2\frac{\omega_1 n(\omega_1)}{c} - \frac{\omega_2 n(\omega_2)}{c}$
= $2\frac{\omega_1 n(\omega_1)}{c} - \frac{2\omega_1 n(2\omega_1)}{c}$
= $\frac{2\omega_1}{c} [n(\omega_1) - n(2\omega_1)]$

$$\Delta k = 0 \implies n(\omega_1) = n(2\omega_1)$$

PI.: Egytengelyű kristály

Kettőstörésen alapuló fázisillesztés

2.) Hőmérséklet változtatásával (kettőstörés mértéke hőm.függő) Walk-off kiküszöbölhető ha θ = 90°.

Szélessávú fázisillesztés

Nemlineáris kristály diszperziójának kompenzálása optikai rács szögdiszperziójának segítségével:

G. Szabó and Z. Bor, Appl. Phys. B 50 (1990) 51

Szélessávú fázisillesztés

$$\omega_{pump} = \omega_{signal} + \omega_{idler}$$
 Energy conservation
 $\mathbf{k}_{pump} = \mathbf{k}_{signal} + \mathbf{k}_{idler}$ Phase matching

Kvázi-fázisillesztés (QPM)

Kettőstörésen alapuló fázisillesztés nem mindig alklamazható, pl.

- izotróp közegben (pl. GaAs),
- ha a kettőstörés mértéke nem elég (pl. rövid hullámhosszaknál)
- ha azonos polarizációs irány szükséges (pl. a legnagyobb nemlineáris eh. kihasználásához, d_{33})

Megoldás lehet: kv.-f.ill. (quasi-phase-matching,QPM)

Homogén egykristály

Periódikusan polarizált kristály

Kristálytengely iránya periódikusan megfordítva.

Pl.: c-tengely ferroelektomos kristályban PI.: ppLN (LiNbO₃)

c-tengely iránya váltakozik $\rightarrow d(z)$ $d(z) = d_{\text{eff}} \operatorname{sign}[\cos(2\pi z/\Lambda)]$

Kvázi-fázisillesztés (QPM)

z / L_{coh}

Kvázi-fázisillesztés (QPM)

PI. SHG:
$$\Delta k_Q = 2k_1 - k_2 - \frac{2\pi}{\Lambda}$$
, $d_Q = \frac{2}{\pi} d_{eff}$
Optimális QPM periódus: \int
 $\Lambda = 2L_{coh} = \frac{2\pi}{2k_1 - k_2}$

PI.: SHG LiNbO₃-ban λ_1 =1064 nm

 $L_{\rm coh} = 3,4 \ \mu m, \Lambda = 6,8 \ \mu m$

Megvalósítás: pl. ferroelektromos domének (így a c-tengely) ~21 kV/mm nagyságú külső sztatikus elektromos térrel való periódikus invertálásával (átfordításával).

A THz spektrális tartomány

Miért érdekes a THz tartomány?

- Nagy molekulák rotációs frekvenciája
- Fontos biomolekulák abszorpciós spektruma érzékeny a molekulák konformációjára
- Molekulák hidratációs környezete
- Magas hőmérsékletű szupravezetők karakterisztikus frekvenciája

Terahertzes sugárzás fehérjéből

Egyciklusú THz-es impulzus

- A THz tartományban "könnyen" előállíthatók egyciklusú (esetleg még rövidebb) impulzusok.
- Elektromos térerősség időfüggése közvetlenül mérhető.

THz-es impulzusok keltése

Módszer	Térerősség	Impulzus- energia
Gyorsítóberendezések	1 MV/cm	100 μJ
Fotokonduktív kapcsolók*	0,1 MV/cm	0,5 μJ
Optikai egyenirányítás*	1 MV/cm	50 μ J
Lézerrel keltett plazma*	0,2 MV/cm	4 μJ

* femtoszekundumos impulzusok felhasználásával

Szinkrotronsugárzás

Table 3.6. Characteristics of the THz Radiation from Electron Accelerators

Accelerator	Pulse Duration	Pulse Energy	Rep Rate	Average Power
NSLS SDL	$\sim 0.3 \text{ ps}$	$\sim 100 \ \mu J$	$\sim 10 \text{ Hz}$	$\sim 1 \text{ mW}$
JLab ERL	$\sim 0.3 \text{ ps}$	$\sim 1 \ \mu J$	$75 \mathrm{~MHz}$	$\sim 20 \mathrm{W}$
BESSY	$\sim 1 \text{ ps}$	$\sim 1 \text{ nJ}$	$500 \mathrm{~MHz}$	$\sim 1 \text{ W}$

Fotokonduktív kapcsoló

- Vezetőképesség megnövekedése félvezetőkben fény hatására
- Fény szabad töltéshordozókat kelt (elektron-lyuk párokat)
- Fotonenergia > tiltott sáv szélessége
- Rövid kapcsolási idő:
 - bekapcsolás: rövid fényimpulzusokkal (~100 fs)
 - kikapcsolás: töltéshordozók rövid élettartama (gyors rekombináció)

Fotokonduktív antenna

- Előfeszített fotokonduktív kapcsoló femtoszekundumos impulzussal megvilágítva
- Gyors áramlökés (gyorsuló töltések) → EM sugárzás

Fotokonduktív antenna

Fotokonduktív antenna

Ultragyors lézerimpulzus segítségével keltett THz-es impulzus általában egyciklusú!

THz Time-Domain Spectroscopy

Minta átviteli függvénye – és ebből a komplex dielektromos állandója – meghatározható a minta nélkül és a mintával felvett $E_{THz}(t)$ jelalakokból.

THz free-space electro-optic sensing

Lézerrel keltett gáz plazmán alapuló THz forrás

Lézerrel keltett gáz plazmán alapuló THz detektor

Optikai egyenirányítás

$$P_{\rm NL}(\Omega) = \varepsilon_0 \chi^{(2)} \int_0^\infty E(\omega + \Omega) E^*(\omega) d\omega$$
$$\Delta \mathbf{k}(\Omega) = \mathbf{k}(\Omega) + \mathbf{k}(\omega) - \mathbf{k}(\omega + \Omega) = 0 \qquad \text{fázisillesztés}$$
$$\Omega << \omega \longrightarrow \partial k/\partial \omega \Big|_{\omega_0} \cdot \Omega$$

$$\Delta k = \left[n(\Omega) - n_{\rm g}(\omega_0) \right] \Omega / c$$

$$v(\Omega) = v_g(\omega_0)$$
 sebességillesztés

Optikai egyenirányítás

Conversion efficiency depends on:

- $\omega_{THz} (\eta \sim \omega_{THz}^2)$
- material parameters

• phase-matching \rightarrow velocity matching: $v_{vis}^{gr} = v_{THz}^{ph}$

$$\eta_{THz} = \frac{2\omega^2 d_{eff}^2 L^2 I}{\varepsilon_0 n_v^2 n_{THz} c^3} \cdot \exp\left[-\alpha_{THz} L/2\right] \cdot \frac{\sinh^2\left[\alpha_{THz} L/4\right]}{\left[\alpha_{THz} L/4\right]^2}$$

$$\alpha_{THz}L << 1 \qquad \qquad \eta_{THz} = \frac{2\omega^2 d_{eff}^2 L^2 I}{\varepsilon_0 n_v^2 n_{THz} c^3} \qquad FOM_{NA} = \frac{d_{eff}^2 L^2}{n_v^2 n_{THz}}$$
$$\alpha_{THz}L >> 1 \qquad \qquad \eta_{THz} = \frac{8\omega^2 d_{eff}^2 I}{\varepsilon_0 n_v^2 n_{THz} \alpha_{THz}^2 c^3} \qquad FOM_A = \frac{4d_{eff}^2}{n_v^2 n_{THz} \alpha_{THz}^2}$$

Optikai egyenirányítás – Nemlineáris kristályok

Material	d _{eff} (pm/V)	n_{800nm}^{gr}	n _{THz}	$n_{1.55\mu m}^{gr}$	α _{THz} (cm ⁻¹)	FOM* (pm ² cm ² /V ²)
CdTe	81.8		3.24	2.81	4.8	11.0
GaAs	65.6	4.18	3.59	3.56	0.5	4.21
GaP	24.8	3.67	3.34	3.16	0.2	0.72
ZnTe	68.5	3.13	3.17	2.81	1.3	7.27
GaSe	28.0	3.13	3.27	2.82	0.5	1.18
sLiNbO ₃ sLN 100K	168	2.25	4.96	2.18	17 4.8	18.2 48.6
DAST	615	3.39	2.58	2.25	50	41.5

Velocity matching condition: $v_{NIR}^{gr} = v_{THz}^{ph} \Rightarrow n_{NIR}^{gr} = n_{THz}$

*2 mm-es kristályra

THz keltés fókuszált nyalábbal

Auston et al.: Phys. Rev. Lett. 53, 1555 (1984)

kúp alakú THz hullámfrontok

Sebességillesztés az impulzusfront döntésével

Döntött intenzitásfrontú fényimpulzus

THz keltés döntött impulzusfrontú gerjesztéssel

THz Beam Profiles

Contact grating

- No limit for lateral size
- No imaging optics

Pálfalvi et al., APL, 2008 Ollmann et al., poster P10

Non-optimized

Optimized

- Grating image is tangential to pulse front
- Longer focal length lens

Fülöp et al., Opt. Express, 2010

Longer Pump Pulse Duration for Longer THz Generation Length

Towards extremely high THz field strengths

For 300 mJ, Ø 5 cm pump \rightarrow 18 mJ THz \rightarrow 100 MV/cm in the focus

Optimization of the Pump Pulse Length

 $au_{\rm p}$ = 500 fs $E_{\rm p}$ = 200 mJ $I_{\rm p,\ max}$ = 40 GW/cm² THz energy $\approx 25 \text{ mJ}$ THz field = 2.8 MV/cm (unfocused) $\rightarrow 10$ MV/cm level using imaging $\rightarrow 100$ MV/cm level using focusing

Towards mJ Level THz Pulses: Our Experiment

Summary

- Optimization of the TPFP technique
 - $\rightarrow\,$ optimized setup containing imaging
 - \rightarrow contact grating setup (extension of beam size)
 - \rightarrow pump pulse duration: 500 fs optimal
 - \rightarrow low crystal temperature
 - $\rightarrow\,$ optimal crystal length

Theory predicts: 100 MV/cm, ~10 mJ

Preliminary experimental results:

125 µJ energy, 0.25% efficiency (non optimised!)

- New application possibilities:
 - \rightarrow nonlinear THz spectroscopy
 - \rightarrow manipulation of electrons and ions

Szakirodalom

R. W. Boyd: Nonlinear Optics
Saleh – Teich: Fundamentals of Photonics
He – Liu: The Physics of Nonlinear Optics
Lee: Principles of Terahertz Science and Technology