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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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Elektronspin-rezonancia (ESR) kvantumdotban

The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
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use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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The second type of quantum dot is defined in the semiconductor dur-
ing the growth of the crystal. For instance, small islands of semiconductor 
material such as indium gallium arsenide (InGaAs) can be created within 
a matrix of a semiconductor with a larger bandgap, such as GaAs (Fig. 1b). 
The difference in bandgap confines charge carriers to the island. Once 
the material is grown, the bandgap profile is fixed. However, changes 
to the overall potential, and potential gradients on top of the bandgap 
profile, can be induced by electric or magnetic fields. Another example 
of growth-defined dots is nanocrystal quantum dots, whose small size 
confines charge carriers. Double dots can be formed in nanocrystal dots 
by growing shells of different materials around the core.

Optical transitions in this second type of quantum dot typically have 
a large oscillator strength, and many studies use only optical techniques. 
Recent years have also seen the advent of hybrid systems, in which both 
electrical transport and optical excitation and detection are possible9.

Experiments on single spins in quantum dots
In the 1990s, measurements of electron transport through single quantum 
dots yielded information about spin states10. The past five years have seen 
tremendous progress towards the control of single spins8. Single-spin 
dynamics was first studied in a series of pioneering experiments11 at the 
NTT Basic Research Laboratories in Atsugi, Japan, in 2001 that made 
use of fast voltage pulses on gate electrodes. Toshimasa Fujisawa, Seigo 
Tarucha and co-workers found that if a transition between two states was 
forbidden by spin-selection rules, the cor responding decay time (more 
than 200 μs) was more than four orders of magnitude greater than for 
transitions not involving a change of spin (about 10 ns). In a second exper-
iment, they made a single electron oscillate coherently between orbitals 
in neighbouring coupled dots12. The orbital (‘charge’) coherence of this 
oscillation was found to disappear in just a few nano seconds, whereas 
theory was predicting coherence times of several micro seconds for the 
spin degree of freedom13–15.

In 2004, Leo Kouwenhoven and co-workers at the Kavli Institute of 
Nanoscience in Delft, the Netherlands, combined the pulse schemes of 
Fujisawa’s group with a fast charge sensor that could tell exactly when 
an electron was entering or leaving the dot. By making the tunnel-
ling rate of the electron from the dot dependent on its spin state, they 
could determine the spin state by measuring the charge on the dot over 
time (Fig. 2a). Two variations of this spin-to-charge conversion were 

demonstrated to work in single-shot mode16,17. Again, relaxation times 
for a single electron and for two-electron spin states were found to be of 
the order of a millisecond. A few years later, even longer electron spin 
relaxation times, of up to a second, were found at magnetic fields of 
a few tesla by Marc Kastner’s group at the Massachusetts Institute 
of Technology in Cambridge18.

Coherent control over two-electron spin states
Two electrons in neighbouring quantum dots with a significant tunnel 
coupling form a two-particle spin wavefunction, which can be a spin 
singlet or a spin triplet. The energy difference between these states can 
be described as an effective exchange splitting, J(t). Control over this 
exchange splitting allows dynamical control of the two-electron spin 
states. If two electrons with opposite spin orientation in neighbouring 
dots are initially decoupled, turning on the coupling will result in a 
precession of the two spins in the singlet–triplet basis. This leads to 
periodic swapping of the two spin states at integer multiples of the 
time interval π!/J (where ! is h/2π and h is Planck’s constant), whereas 
the electrons are entangled for intermediate times1. In fact, the state 
swapping occurs for arbitrary initial states of the two spins. This two-
spin control, appropriately called a SWAP operation, is an essential 
ingredient for many proposals for quantum computing with spins in 
dots19–21. If logical quantum bits (qubits) are encoded in more than 
one spin, control over the exchange splitting is sufficient to build up 
any quantum gate22. The exchange operation has several benefits: the 
control is fully electrical, the interaction can be turned on and off, 
and the resultant gate operation times can be very short (less than 
a nanosecond).

The first step towards the exchange operation was the observation 
by Tarucha’s group23 of Pauli spin blockade in a double quantum dot. 
The presence of double-dot singlet and triplet states became apparent 
when the current was suppressed in one bias direction (Fig. 2c). It was 
later found that this current blockade can be lifted by fluctuating fields 
from the nuclear spins that cause mixing of the singlet and triplet spin 
states24,25. In 2005, by using the strength of the exchange interaction to 
control the mixing, Charles Marcus’s group at Harvard University in 
Cambridge, Massachusetts, demonstrated coherent oscillations of two 
spins26. Although it was not yet possible to probe arbitrary input states, 
this experiment demonstrated the essence of the SWAP gate.
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Figure 1 | Single-spin systems. Studies of the coherence of a single spin require 
a system in which the spin is localized and isolated from environmental 
disturbances. In semiconductors, such systems are either impurity atoms or 
quantum dots, which act as artificial atoms. In the three systems on which 
this article mainly focuses, the level of experimental control is so high that 
the dynamics of a single spin can be studied and manipulated. a, A quantum 
dot defined in a two-dimensional electron gas (2DEG). The electrons are 
confined in the third dimension by electric fields from the surface gate 
electrodes. Electron spins can be manipulated using magnetic resonance or 
a combination of electric fields and a position-dependent effective magnetic 
field. Interactions between spins in neighbouring tunnel-coupled dots are 
mediated by the exchange interaction. These quantum dots are typically 
measured at temperatures below 1 K. b, A quantum dot defined by growth. 
The semiconductor of the island has a smaller bandgap than that of the 
surrounding matrix, thereby confining charge carriers to the island. Spins 

can be created and controlled optically. Additional gates can be used to 
apply an electric field to the structure to change the number of carriers on 
the quantum dot. Measurements are typically carried out at around 4 K. 
Scale bar, 5 nm. c, A nitrogen–vacancy (N–V) colour centre in diamond, 
consisting of a substitutional nitrogen atom next to a missing carbon atom. 
The N–V centre (in the negatively charged state) comprises six electrons that 
form a spin triplet in the electronic ground state. Strong optical transitions 
to excited states, in combination with spin-selection rules, allow optical 
initialization and read-out of the electron spin. Coherent control of the 
spin has been demonstrated with high fidelity at room temperature using 
magnetic resonance. The N–V centre interacts with nearby electron spins by 
means of magnetic dipolar coupling, and through hyperfine interaction with 
nearby nuclear spins. Also, non-local coupling between N–V centres may be 
established by using the optical transition; photons then act as mediators of 
the interaction.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:

j " lj " l ! j " l j " lþ j # lffiffiffi
2

p ! j " lj # l !

j " l j " l2 j # lffiffiffi
2

p ! j " lj " l

When the RF burst is on-resonance with both spins, the time
evolution is:

j " lj " l ! j " lþ j # lffiffiffi
2
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Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
2

" #2
Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:

j " lj " l ! j " l j " lþ j # lffiffiffi
2
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When the RF burst is on-resonance with both spins, the time
evolution is:
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Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
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Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.

NATURE|Vol 442|17 August 2006 ARTICLES

769

t

P↑(t)
0.5

orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 
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Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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(Fig. 4b, inset). From the fit we obtain B ac ¼ 0.59mT for a stripline
current ICPS of ,1mA, which agrees well with predictions from
numerical finite element simulations (see Supplementary Fig. S1).
The maximum B1 we could reach in the experiment before electric
field effects hindered the measurement was 1.9mT, corresponding to
p/2 rotations of only 27 ns (that is, a Rabi period of 108 ns, see Fig.
4b). If the accompanying electric fields from the stripline excitation
could be reduced in future experiments (for example, by improving
the impedance matching from coax to CPS), considerably faster Rabi
flopping should be attainable.
The oscillations in Fig. 4b remain visible throughout the entire

measurement range, up to 1 ms. This is striking, because the Rabi
period of,100 ns is much longer than the time-averaged coherence
time T2* of 10–20 ns (refs 14, 19, 35, 36) caused by the nuclear field
fluctuations. The slow damping of the oscillations is only possible
because the nuclear field fluctuates very slowly compared to the
timescale of spin rotations and because other mechanisms, such as

the spin-orbit interaction, disturb the electron spin coherence only
on even longer timescales13,41,42. We also note that the decay is not
exponential (grey line in Fig. 4a), which is related to the fact that the
nuclear bath is non-markovian (it has a long memory)43.

Theoretical model
To understand better the amplitudes and decay times of the oscil-
lations, we model the time evolution of the spins throughout the
burst duration. The model uses a hamiltonian that includes the
Zeeman splitting for the two spins and the RF field, which we take to
be of equal amplitude in both dots (SL and SR refer to the electron
spins in the left and right dot respectively):

H ¼gmBðBext þBL;NÞSL þ gmBðBext þBR;NÞSR

þ gmB cosðqtÞBacðSL þ SRÞ
where BL,N and BR,N correspond to a single frozen configuration of
the nuclear field in the left and right dot. This is justified because the
electron spin dynamics is much faster than the dynamics of the
nuclear system. From the resulting time evolution operator and
assuming that the initial state is a statistical mixture of " " and # #,
we can numerically obtain the probability for having anti-parallel
spins after the RF burst. This is also the probability that the left
electron tunnels to the right dot during the read-out stage.
In the current measurements of Fig. 4a, each data point is averaged

over 15 s, which presumably represents an average over many nuclear
configurations. We include this averaging over different nuclear
configurations in the model by taking 2,000 samples from a gaussian
distribution of nuclear fields (with standard deviation j¼

ffiffiffiffiffiffiffiffiffi
kB2

Nl
p

),
and computing the probability that an electron tunnels out after
the RF burst. When the electron tunnels, one or more additional
electrons, say m, may subsequently tunnel through before " " or # #
is formed and the current is blocked again. Takingm and j as fitting
parameters, we find good agreement with the data for m¼1.5 and
j ¼ 2.2 mT (solid black lines in Fig. 4a). This value for j is
comparable to that found in refs 35 and 36. The value found for m
is different from what we would expect from a simple picture where
all four spin states are formed with equal probability during the
initialization stage, which would give m ¼ 1. We do not understand
this discrepancy, but it could be due to different tunnel rates for "
and # or more subtle details in the transport cycle that we have
neglected in the model.

Time evolution of the spin states during RF bursts
We now discuss in more detail the time evolution of the two spins
during a RF burst. The resonance condition in each dot depends on
the effective nuclear field, which needs to be added vectorially to B ext.
Through their continuous reorientation, the nuclear spins will bring
the respective electron spins in the two dots on and off resonance as
time progresses.
When a RF burst is applied to two spins initially in " ", and is on-

resonance with the right spin only, the spins evolve as:

j " lj " l ! j " l j " lþ j # lffiffiffi
2

p ! j " lj # l !

j " l j " l2 j # lffiffiffi
2

p ! j " lj " l

When the RF burst is on-resonance with both spins, the time
evolution is:

j " lj " l ! j " lþ j # lffiffiffi
2

p j " lþ j # lffiffiffi
2

p ! j # lj # l !

j " l2 j # lffiffiffi
2

p j " l2 j # lffiffiffi
2

p ! j " lj " l

Figure 4 | Coherent spin rotations. a, The dot current—reflecting the spin
state at the end of the RF burst—oscillates as a function of RF burst length
(curves offset by 100 fA for clarity). The frequency of Bac is set at the spin
resonance frequency of 200MHz (B ext ¼ 41mT). The period of the
oscillation increases and is more strongly damped for decreasing RF power.
The RF power P applied to the CPS is estimated from the power applied to
the coax line and the attenuation in the lines and RF switch. From P, the
stripline current is calculated via the relation P¼ 1

2
ICPS
2

" #2
Z0 assuming

perfect reflection of the RF wave at the short. Each measurement point is
averaged over 15 s.We correct for a current offset which ismeasuredwith the
RF frequency off-resonance (280MHz). The solid lines are obtained from
numerical computation of the time evolution, as discussed in the text. The
grey line corresponds to an exponentially damped envelope. b, The
oscillating dot current (represented in colourscale) is displayed over a wide
range of RF powers (the sweep axis) and burst durations. The dependence of
the Rabi frequency fRabi on RF power is shown in the inset. fRabi is extracted
from a sinusoidal fit with the current oscillations from 10 to 500 ns for RF
powers ranging from 212.5 dBm up to 26 dBm.
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 
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Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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Figure 1 Schematic diagram of a graphene double quantum dot.Each dot is
assumed to have length L and width W. The structure is based on a ribbon of
graphene (grey) with semiconducting armchair edges (white). Confinement is
achieved by tuning the voltages applied to the ‘barrier’ gates (blue) to appropriate
values such that bound states exist. Additional gates (red) allow one to shift the
energy levels of the dots. Virtual hopping of electrons through barrier 2 (thicknessd )
gives rise to a tuneable exchange coupling J between two electron spins localized in
the left and the right dots. The exchange coupling is then used to generate universal
two-qubit gates.

quantum dots. In the wavefunction Ψ , A and B refer to the two
sublattices in the two-dimensional honeycomb lattice of carbon
atoms, whereas K and K ′ refer to the vectors in reciprocal space
corresponding to the two valleys in the bandstructure of graphene.
The appropriate semiconducting armchair boundary conditions
for such a wavefunction have been formulated in ref. 28 and can
be written as (α = A,B)

Ψ (K )
α |x=0 =Ψ (K ′ )

α |x=0, Ψ (K )
α |x=W = e±2π/3Ψ (K ′ )

α |x=W , (2)

corresponding to a width W of the ribbon shown in Fig. 1, where
W is not an integer multiple of three unit cells. The ± signs
in equation (2) (as well as in equation (3) below) correspond to
the two possible choices of a number of unit cells that is not
an integer multiple of three. The full set of plane-wave solutions
of equation (1) is readily determined29. It is well known that
the boundary condition (2) yields the following quantization
conditions for the wavevector kx ≡ qn in the x direction28,29

qn = (n±1/3)π/W , n ∈ Z. (3)

An explicit form of the corresponding wavefunctions is presented
in the Supplementary Information. The level spacing of the modes
(3) can be estimated as "ε ≈ h̄vπ/3W , which gives "ε ≈ 30 meV,
where we used v ≈ 106 m s−1 and assumed a quantum-dot width
of about W ≈ 30 nm. Note that equation (3) also determines the
energy gap for excitations as Egap = 2h̄vq0. Therefore, this gap is of
the order of 60 meV, which is unusually small for semiconductors.
This is a unique feature of graphene that will allow for long-distance
coupling of spin qubits as will be discussed below.

We now present in more detail the ground-state solutions,
that is, n = 0 and q0 > 0 in equation (3). The corresponding
ground-state energy ε can be expressed relative to the potential
barrier V = Vbarrier in the regions y < 0 and y > L as
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Figure 2 Bound-state solutions for two different dot sizes. a,b, Bound-state
solutions of a relatively long, q0L= 5 (a), and a shorter, q0L= 2 (b), quantum dot.
The diagonal straight lines mark the area in which bound-state solutions can occur.
The arrow marks the solution for which the wavefunction is plotted in Fig. 4.

ε = eVbarrier ± h̄v(q2
0 + k2)1/2. Here, the ± sign refers to a

conduction-band (+) and a valence-band (−) solution to
equation (1). For bound states to exist and to decay at y →±∞, we
require that h̄vq0 > |ε−eVbarrier|, which implies that the wavevector
ky ≡ k in the y direction, given by

k = i
√

q2
0 − ((ε− eVbarrier)/h̄v)2, (4)

is purely imaginary. In the dot region (0 ≤ y ≤ L), the
wavevector k in the y direction is replaced by k̃, satisfying
ε = eVgate ± h̄v(q2

0 + k̃2)1/2. Again the ± sign refers to conduction-
and valence-band solutions. In the following, we focus on
conduction-band solutions to the problem.

As the Dirac equation (1) implies the continuity of the
wavefunction, the matching condition at y = 0 and y = L allows
us to derive the transcendental equation for ε

e2ik̃L(z0,k − z0,k̃)
2 − (1− z0,k z0,k̃)

2 = 0 (5)

with z0,k ≡ (q0 + ik)/(q2
0 + k2)1/2. Equation (5) determines the

allowed energies ε for bound states. To analyse the solutions
to equation (5), we distinguish two cases, one where k̃ is real,
and the other, where k̃ is purely imaginary. The two cases
are distinguished by the condition |ε − eVgate| ≥ h̄vq0 and
|ε − eVgate| < h̄vq0, respectively. Furthermore, we assume that
Vgate *= Vbarrier, that is, z0,k *= z0,k̃. If we relax this assumption, we
can show that for the case z0,k = z0,k̃ only a single solution to
equation (5) exists, namely z0,k̃ = 1, which implies that k̃ = 0. The
corresponding wavefunction to this solution vanishes identically
(see Supplementary Information for further details). In the case
where k̃ is purely imaginary, there is no bound-state solution.
This is due to the fact that such a solution would have to exist
directly in the bandgap. We now analyse solutions for real k̃. In the
corresponding energy window

|ε− eVgate| ≥ h̄vq0 > |ε− eVbarrier|,

we can simplify equation (5) considerably, obtaining

tan(k̃L) = h̄vk̃
√

(h̄vq0)2 − (ε− eVbarrier)2

(ε− eVbarrier)(ε− eVgate)− (h̄vq0)2
. (6)

We show a set of solutions to equation (6) for a relatively short dot
(q0L = 2) as well as a longer dot (q0L = 5) in Fig. 2. The number
of bound states N (for n = 0) is maximal if "V = Vbarrier − Vgate

is exactly as large as the size of the gap Egap = 2h̄vq0, then
Nmax =

⌈√
8q0L/π

⌉
, where ,x- is the integer just larger than x. The

level spacing associated with the allowed solutions of equation (6)

nature physics VOL 3 MARCH 2007 www.nature.com/naturephysics 193

!"#$#%&'()***+ ),-+-./0*)1.21,.*34

Trauzettel et al., Nat. Phys. 2007

“armchair” grafén nanoszalag

a
rX

iv
:0

8
0

6
.1

4
7

5
v

1
  

[c
o

n
d

-m
a
t.

m
e
s-

h
a
ll

] 
 9

 J
u

n
 2

0
0

8

Tunable Graphene Single Electron Transistor

C. Stampfer∗, E. Schurtenberger, F. Molitor, J. Güttinger, T. Ihn, and K. Ensslin
Solid State Physics Laboratory, ETH Zurich, 8093 Zurich, Switzerland

(Dated: June 9, 2008)

We report electronic transport experiments on a graphene single electron transistor. The device
consists of a graphene island connected to source and drain electrodes via two narrow graphene
constrictions. It is electrostatically tunable by three lateral graphene gates and an additional back
gate. The tunneling coupling is a strongly nonmonotonic function of gate voltage indicating the
presence of localized states in the barriers. We investigate energy scales for the tunneling gap, the
resonances in the constrictions and for the Coulomb blockade resonances. From Coulomb diamond
measurements in different device configurations (i.e. barrier configurations) we extract a charging
energy of ≈ 3.4 meV and estimate a characteristic energy scale for the constriction resonances
of ≈ 10 meV.

PACS numbers: 71.10.Pm, 73.21.-b, 81.05.Uw, 81.07.Ta

The recent discovery of graphene [1, 2], filling the
gap between quasi 1-dimensional (1-D) nanotubes and
3-D graphite makes truly 2-D crystals accessible and
links solid state devices to molecular electronics [3].
Graphene, which exhibits unique electronic properties
including massless carriers near the Fermi level and po-
tentially weak spin orbit and hyperfine couplings [4, 5]
has been proposed to be a promising material for spin
qubits [6], high mobility electronics [7, 8] and it may have
the potential to contribute to the downscaling of state-of-
the-art silicon technology [9]. The absence of an energy
gap in 2-D graphene and phenomena related to Klein
tunneling [10, 11] make it hard to confine carriers electro-
statically and to control transport on the level of single
particles. However, by focusing on graphene nanorib-
bons, which are known to exhibit an effective transport
gap [7, 8, 12, 13] this limitation can be overcome. It has
been shown recently that such a transport gap allows to
fabricate well tunable graphene nanodevices [14, 15, 16].
Here we investigate a fully tunable single electron transis-
tor (SET) that consists of a width modulated graphene
structure exhibiting spatially separated transport gaps.
SETs consist of a conducting island connected by tunnel-
ing barriers to two conducting leads. Electronic transport
through the device can be blocked by Coulomb interac-
tion for temperatures and bias voltages lower than the
characteristic energy required to add an electron to the
island [17].
The sample is fabricated based on single-layer graphene
flakes obtained from mechanical exfoliation of bulk
graphite. These flakes are deposited on a highly doped
silicon substrate with a 295 nm silicon oxide layer [1].
Electron beam (e-beam) lithography is used for pattern-
ing the isolated graphene flake by subsequent Ar/O2 re-
active ion etching. Finally, an additional e-beam and
lift-off step is performed to pattern Ti/Au (2 nm/50 nm)
electrodes. For the detailed fabrication process and the

∗Corresponding author, e-mail: stampfer@phys.ethz.ch

single-layer graphene verification we refer to Refs. [14,
18, 19]. Fig. 1a shows a scanning force micrograph of
the investigated device. Both the metal electrodes and
the graphene structure are highlighted. In Fig. 1b, a
schematic illustration of the fabricated graphene SET de-
vice is shown. Source (S) and drain (D) contacts connect
via 50 nm wide constrictions to the graphene island. The
two constrictions are separated by ≈ 750 nm and the is-
land has an area A ≈ 0.06 µm2 (see Figs. 1a,b). In order
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FIG. 1: (color online) (a) Scanning force microscope im-
age of the investigated graphene single electron transistor
(SET) device, where the graphene structure and the metal
electrodes are highlighted. The minimum feature size is ap-
prox. 50 nm. (b) Schematic illustration of the tunable SET
device with electrode assignment. (c) Low bias back gate
trace for Vb1 = Vb2 = Vpg = 0 V. The resolved transport gap
separates between hole and electron transport. (d) Effective
energy band structure of the device as depicted in Fig. 1b.
The tunnel barriers exhibit an effective energy gap of approx.
6.5 meV. For more information of this model see text.

to tune the two tunneling barriers and the island elec-
trostatically and independently, three lateral graphene
gates [20] have been fabricated closer than 100 nm to the
active graphene structure (see Fig. 1a). These are the
two barrier gates B1 and B2, and the plunger gate PG
(Fig. 1b). The additional highly doped silicon substrate
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A valley (= izospin) szabadsági fok grafénben

on the honeycomb lattice couples only A sites with B
sites,1

E!A = " !
neighbors

!B, E!B = " !
neighbors

!A. "3#

In a more concise notation, Eq. "2# may be written as

vp · !! = E! , "4#

with p=−i#"! /!x ,! /!y# the momentum operator in the
x-y plane and != "$x ,$y ,$z# the vector of Pauli matrices
acting on the spinor != "%A ,%B#. "For later use, we de-
fine $0 as the 2&2 unit matrix.# The spin degree of free-
dom described by the Pauli matrices $i is called the
“pseudospin,” to distinguish it from the real electron
spin.

This two-dimensional Dirac equation describes states
with wave vector k in the valley centered at the corner
of the Brillouin zone with wave vector K= "4' /3a#x̂. The
valley at the opposite corner at −K produces an inde-
pendent set of states with amplitudes %A! "r#e−iK·r and
%B! "r#e−iK·r on the A and B sublattices. The two compo-
nents %A! and %B! satisfy the same Dirac equation "4#
with px→−px. The spinor %= "%A ,%B ,−%B! ,%A! # con-
taining both valleys, therefore, satisfies the four-
dimensional Dirac equation,2

$vp · ! 0
0 vp · !

%% = E% . "5#

This differential equation represents the low-energy and
long-wavelength limit of the difference equation "3# in
the tight-binding model of graphene.

For a compact notation, we make use of a second set
of Pauli matrices "= ""x ,"y ,"z#, with "0 the 2&2 unit ma-
trix, acting on the valley degree of freedom "while ! and
$0 act on the sublattice degree of freedom#. Equation "5#
may then be written as

H"A#% = E% , "6a#

H"A# = v&"p + eA# · !' ! "0 + U$0 ! "0, "6b#

where for generality we have also included external
electromagnetic fields "with scalar potential U and vec-
tor potential A#. Electromagnetic fields do not couple
the two valleys, provided that the fields vary smoothly
on the scale of the lattice constant.

To conclude, we comment on the quantum-relativistic
analog of Eq. "5#, referring the reader to Gusynin et al.
"2007# for a more extensive discussion. In three dimen-
sions, and with a change of sign for one of the two sub-
blocks vp ·!, Eq. "5# represents the Dirac "or Dirac-
Weyl# equation of massless neutrinos, with v the speed
of light. The valley degree of freedom corresponds to
the chirality of neutrinos, which have left-handed or
right-handed circular polarization "corresponding to the
opposite sign of the two subblocks#. In two dimensions,
the relative sign of the two subblocks can be changed by
a unitary transformation, so the distinction between left
or right handedness cannot be made. Electrons in
graphene are called “chiral” because their direction of
motion is tied to the direction of the pseudospin. Indeed,
the current operator

j = v! ! "0 "7#

is proportional to the pseudospin operator !, so that an
electron moving in the x or y direction has a pseudospin
pointing in the x or y direction. Because the pseudospin
is two-dimensional, there is no analog of circular polar-
ization, and therefore there is no left or right handed-
ness in graphene.

B. Time-reversal symmetry

The time reverse of the state %XeiK·r+%X! e−iK·r

on the X=A ,B sublattice is the complex conjugate
%X

* e−iK·r+%X
!*eiK·r. This implies that the time re-

verse of the spinor %= "%A ,%B ,−%B! ,%A! # is T%

= "%A
!* ,%B

!* ,−%B
* ,%A

* #. The time-reversal operator T,
therefore, has the form

1Next-nearest-neighbor hopping contributes second-order
spatial derivatives, which are of higher order in a(k and may
therefore be neglected in first approximation.

2The valley-isotropic representation "5# of the four- dimen-
sional Dirac equation "with two identical 2&2 subblocks# is
used to write boundary conditions in a compact form "see Sec.
II.C#. Other representations "with two unequal subblocks# are
common in the literature as well, and one should be aware of
this when comparing formulas from different papers.

FIG. 4. Honeycomb lattice of a carbon monolayer. The unit
cell contains two atoms, labeled A and B, each of which gen-
erates a triangular sublattice "open and closed circles#. The
lattice constant a is (3 times larger than the carbon-carbon
separation of 0.142 nm. The reciprocal-lattice vector K has
length 4' /3a. The edge of the lattice may have the armchair
configuration "containing an equal number of atoms from each
sublattice#, or the zigzag configuration "containing atoms from
one sublattice only#. Dashed circles and bonds indicate missing
atoms and dangling bonds, respectively. The separation W of
opposite edges is measured from one row of missing atoms to
the opposite row, as indicated.
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spectroscopic measurements by Zhou et al. !2006" and
Bostwick et al. !2007", the electronic properties of
graphene are described by an equation !the Dirac equa-
tion" of relativistic quantum mechanics, even though the
microscopic Hamiltonian of carbon atoms is nonrelativ-
istic. While graphene itself is not superconducting, it ac-
quires superconducting properties by proximity to a su-
perconductor. We therefore have the unique possibility
to bridge the gap between relativity and superconductiv-
ity in a real material.

For example, Fig. 2 shows two superconducting elec-
trodes on top of a carbon monolayer. The supercurrent
measured through this device by Heersche et al. !2007" is
carried by massless electrons and holes, converted into
each other by the superconducting pair potential. This
conversion process, known as Andreev reflection !An-
dreev, 1964", is described by a superconducting variant
of the Dirac equation !Beenakker, 2006".

In this Colloquium, we review the unusual physics of
Andreev reflection in graphene. For a broader perspec-
tive, we compare and contrast this coupling of electrons
and holes by a superconducting pair potential with the
coupling of electrons and holes by an electrostatic po-
tential. The latter phenomenon is called Klein tunneling
!Cheianov and Fal’ko, 2006; Katsnelson, et al., 2006"
with reference to relativistic quantum mechanics, where
it represents the tunneling of a particle into the Dirac
sea of antiparticles !Klein, 1929". Klein tunneling in
graphene is the tunneling of an electron from the con-
duction band into hole states from the valence band
!which plays the role of the Dirac sea".

The two phenomena, Andreev reflection and Klein
tunneling, are introduced in Secs. III and IV, respec-
tively, and then compared in Sec. V. But first we summa-
rize, in Sec. II, the special properties of graphene that
govern these two phenomena. More comprehensive re-
views of graphene have been written by Castro Neto et
al. !2006, 2007", Geim and Novoselov !2007", Gusynin et
al. !2007", Katsnelson !2007", and Katsnelson and No-
voselov !2007".

II. BASIC PHYSICS OF GRAPHENE

A. Dirac equation

The unusual band structure of a single layer of graph-
ite, shown in Fig. 3, has been known for 60 years !Wal-

lace, 1947". Near each corner of the hexagonal first Bril-
louin zone, the energy E has a conical dependence on
the two-dimensional wave vector k= !kx ,ky". Denoting
by !k=k−K the displacement from the corner at wave
vector K, one has for !ka"1 the dispersion relation

#E# = #v#!k# . !1"

The velocity v$ 1
2
%3$a /#&106 m/s is proportional to

the lattice constant a=0.246 nm and to the nearest-
neighbor hopping energy $&3 eV on the honeycomb
lattice of carbon atoms !shown in Fig. 4".

The linear dispersion relation !1" implies an energy-
independent group velocity vgroup$!E /#!k=v of low-
energy excitations !E"$". These electron excitations
!filled states in the conduction band" or hole excitations
!empty states in the valence band", therefore, have zero
effective mass. DiVincenzo and Mele !1984" and Se-
menoff !1984" noticed that—even though v"c—such
massless excitations are governed by a wave equation,
the Dirac equation, of relativistic quantum mechanics,

− i#v' 0 !x − i!y

!x + i!y 0
('%A

%B
( = E'%A

%B
( . !2"

)The derivation of this equation for a carbon monolayer
goes back to McClure !1956".*

The two components %A and %B give the amplitude
%A!r"eiK·r and %B!r"eiK·r of the wave function on the A
and B sublattices of the honeycomb lattice !see Fig. 4".
The differential operator couples %A to %B but not to
itself, in view of the fact that nearest-neighbor hopping

FIG. 2. !Color online" Atomic force microscope image !false
color" of a carbon monolayer covered by two superconducting
Al electrodes. From Heersche et al., 2007.

FIG. 3. !Color online" Band structure E!kx ,ky" of a carbon
monolayer. The hexagonal first Brillouin zone is indicated. The
conduction band !E&0" and the valence band !E'0" form
conically shaped valleys that touch at the six corners of the
Brillouin zone !called conical points, Dirac points, or K
points". The three corners marked by a white dot are con-
nected by reciprocal-lattice vectors, so they are equivalent.
Likewise, the three corners marked by a black dot are equiva-
lent. In undoped grapheme, the Fermi level passes through the
Dirac points. Illustration by C. Jozsa and B. J. van Wees.
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sites,1
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In a more concise notation, Eq. "2# may be written as

vp · !! = E! , "4#

with p=−i#"! /!x ,! /!y# the momentum operator in the
x-y plane and != "$x ,$y ,$z# the vector of Pauli matrices
acting on the spinor != "%A ,%B#. "For later use, we de-
fine $0 as the 2&2 unit matrix.# The spin degree of free-
dom described by the Pauli matrices $i is called the
“pseudospin,” to distinguish it from the real electron
spin.

This two-dimensional Dirac equation describes states
with wave vector k in the valley centered at the corner
of the Brillouin zone with wave vector K= "4' /3a#x̂. The
valley at the opposite corner at −K produces an inde-
pendent set of states with amplitudes %A! "r#e−iK·r and
%B! "r#e−iK·r on the A and B sublattices. The two compo-
nents %A! and %B! satisfy the same Dirac equation "4#
with px→−px. The spinor %= "%A ,%B ,−%B! ,%A! # con-
taining both valleys, therefore, satisfies the four-
dimensional Dirac equation,2

$vp · ! 0
0 vp · !

%% = E% . "5#

This differential equation represents the low-energy and
long-wavelength limit of the difference equation "3# in
the tight-binding model of graphene.

For a compact notation, we make use of a second set
of Pauli matrices "= ""x ,"y ,"z#, with "0 the 2&2 unit ma-
trix, acting on the valley degree of freedom "while ! and
$0 act on the sublattice degree of freedom#. Equation "5#
may then be written as

H"A#% = E% , "6a#

H"A# = v&"p + eA# · !' ! "0 + U$0 ! "0, "6b#

where for generality we have also included external
electromagnetic fields "with scalar potential U and vec-
tor potential A#. Electromagnetic fields do not couple
the two valleys, provided that the fields vary smoothly
on the scale of the lattice constant.

To conclude, we comment on the quantum-relativistic
analog of Eq. "5#, referring the reader to Gusynin et al.
"2007# for a more extensive discussion. In three dimen-
sions, and with a change of sign for one of the two sub-
blocks vp ·!, Eq. "5# represents the Dirac "or Dirac-
Weyl# equation of massless neutrinos, with v the speed
of light. The valley degree of freedom corresponds to
the chirality of neutrinos, which have left-handed or
right-handed circular polarization "corresponding to the
opposite sign of the two subblocks#. In two dimensions,
the relative sign of the two subblocks can be changed by
a unitary transformation, so the distinction between left
or right handedness cannot be made. Electrons in
graphene are called “chiral” because their direction of
motion is tied to the direction of the pseudospin. Indeed,
the current operator

j = v! ! "0 "7#

is proportional to the pseudospin operator !, so that an
electron moving in the x or y direction has a pseudospin
pointing in the x or y direction. Because the pseudospin
is two-dimensional, there is no analog of circular polar-
ization, and therefore there is no left or right handed-
ness in graphene.

B. Time-reversal symmetry

The time reverse of the state %XeiK·r+%X! e−iK·r

on the X=A ,B sublattice is the complex conjugate
%X

* e−iK·r+%X
!*eiK·r. This implies that the time re-

verse of the spinor %= "%A ,%B ,−%B! ,%A! # is T%

= "%A
!* ,%B

!* ,−%B
* ,%A

* #. The time-reversal operator T,
therefore, has the form

1Next-nearest-neighbor hopping contributes second-order
spatial derivatives, which are of higher order in a(k and may
therefore be neglected in first approximation.

2The valley-isotropic representation "5# of the four- dimen-
sional Dirac equation "with two identical 2&2 subblocks# is
used to write boundary conditions in a compact form "see Sec.
II.C#. Other representations "with two unequal subblocks# are
common in the literature as well, and one should be aware of
this when comparing formulas from different papers.

FIG. 4. Honeycomb lattice of a carbon monolayer. The unit
cell contains two atoms, labeled A and B, each of which gen-
erates a triangular sublattice "open and closed circles#. The
lattice constant a is (3 times larger than the carbon-carbon
separation of 0.142 nm. The reciprocal-lattice vector K has
length 4' /3a. The edge of the lattice may have the armchair
configuration "containing an equal number of atoms from each
sublattice#, or the zigzag configuration "containing atoms from
one sublattice only#. Dashed circles and bonds indicate missing
atoms and dangling bonds, respectively. The separation W of
opposite edges is measured from one row of missing atoms to
the opposite row, as indicated.
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spectroscopic measurements by Zhou et al. !2006" and
Bostwick et al. !2007", the electronic properties of
graphene are described by an equation !the Dirac equa-
tion" of relativistic quantum mechanics, even though the
microscopic Hamiltonian of carbon atoms is nonrelativ-
istic. While graphene itself is not superconducting, it ac-
quires superconducting properties by proximity to a su-
perconductor. We therefore have the unique possibility
to bridge the gap between relativity and superconductiv-
ity in a real material.

For example, Fig. 2 shows two superconducting elec-
trodes on top of a carbon monolayer. The supercurrent
measured through this device by Heersche et al. !2007" is
carried by massless electrons and holes, converted into
each other by the superconducting pair potential. This
conversion process, known as Andreev reflection !An-
dreev, 1964", is described by a superconducting variant
of the Dirac equation !Beenakker, 2006".

In this Colloquium, we review the unusual physics of
Andreev reflection in graphene. For a broader perspec-
tive, we compare and contrast this coupling of electrons
and holes by a superconducting pair potential with the
coupling of electrons and holes by an electrostatic po-
tential. The latter phenomenon is called Klein tunneling
!Cheianov and Fal’ko, 2006; Katsnelson, et al., 2006"
with reference to relativistic quantum mechanics, where
it represents the tunneling of a particle into the Dirac
sea of antiparticles !Klein, 1929". Klein tunneling in
graphene is the tunneling of an electron from the con-
duction band into hole states from the valence band
!which plays the role of the Dirac sea".

The two phenomena, Andreev reflection and Klein
tunneling, are introduced in Secs. III and IV, respec-
tively, and then compared in Sec. V. But first we summa-
rize, in Sec. II, the special properties of graphene that
govern these two phenomena. More comprehensive re-
views of graphene have been written by Castro Neto et
al. !2006, 2007", Geim and Novoselov !2007", Gusynin et
al. !2007", Katsnelson !2007", and Katsnelson and No-
voselov !2007".

II. BASIC PHYSICS OF GRAPHENE

A. Dirac equation

The unusual band structure of a single layer of graph-
ite, shown in Fig. 3, has been known for 60 years !Wal-

lace, 1947". Near each corner of the hexagonal first Bril-
louin zone, the energy E has a conical dependence on
the two-dimensional wave vector k= !kx ,ky". Denoting
by !k=k−K the displacement from the corner at wave
vector K, one has for !ka"1 the dispersion relation

#E# = #v#!k# . !1"

The velocity v$ 1
2
%3$a /#&106 m/s is proportional to

the lattice constant a=0.246 nm and to the nearest-
neighbor hopping energy $&3 eV on the honeycomb
lattice of carbon atoms !shown in Fig. 4".

The linear dispersion relation !1" implies an energy-
independent group velocity vgroup$!E /#!k=v of low-
energy excitations !E"$". These electron excitations
!filled states in the conduction band" or hole excitations
!empty states in the valence band", therefore, have zero
effective mass. DiVincenzo and Mele !1984" and Se-
menoff !1984" noticed that—even though v"c—such
massless excitations are governed by a wave equation,
the Dirac equation, of relativistic quantum mechanics,

− i#v' 0 !x − i!y

!x + i!y 0
('%A

%B
( = E'%A

%B
( . !2"

)The derivation of this equation for a carbon monolayer
goes back to McClure !1956".*

The two components %A and %B give the amplitude
%A!r"eiK·r and %B!r"eiK·r of the wave function on the A
and B sublattices of the honeycomb lattice !see Fig. 4".
The differential operator couples %A to %B but not to
itself, in view of the fact that nearest-neighbor hopping

FIG. 2. !Color online" Atomic force microscope image !false
color" of a carbon monolayer covered by two superconducting
Al electrodes. From Heersche et al., 2007.

FIG. 3. !Color online" Band structure E!kx ,ky" of a carbon
monolayer. The hexagonal first Brillouin zone is indicated. The
conduction band !E&0" and the valence band !E'0" form
conically shaped valleys that touch at the six corners of the
Brillouin zone !called conical points, Dirac points, or K
points". The three corners marked by a white dot are con-
nected by reciprocal-lattice vectors, so they are equivalent.
Likewise, the three corners marked by a black dot are equiva-
lent. In undoped grapheme, the Fermi level passes through the
Dirac points. Illustration by C. Jozsa and B. J. van Wees.
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Fig. 2: Orbital electronic structure of NTs.  (a) The quantization condition (gray planes) 

around the nanotube circumference results in four hyperbolic bands (green and purple) 

near the two Dirac points (K ,K!) of graphene. (b) The lowest electron-like states in the K 

and K! valley are equal in energy (green and purple dots in panel a), and constitute a 

clockwise and counterclockwise persistent ring current. (c) The resulting large orbital 

magnetic moments "orb can be employed to lift the valley degeneracy or tune the band-

gap Egap with an external magnetic field B||. 

 

 

 
 

 

Fig. 3 (a) Schematic of the main fabrication steps of a suspended NT quantum dot. No 

processing is needed after CVD growth, resulting in clean NTs. (b) Optical image of the 

bonding pads for four devices before carbon nanotube growth. (c,d) Scanning electron 

micrographs of devices with 1 "m and 0.1 "m wide trenches. The nanotubes and oxide 

sidewalls appear bright in the top view (d).  
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Fig. 4 (a) Understanding the four quantum states of the lowest electronic shell (red). (b) 

At sub-Kelvin temperatures and finite magnetic field the four combinations of clock-

wise/counterclockwise motion (K/K’) and spin up/down (!/") are clearly resolved in a 

suspended device using tunneling spectroscopy. (c) Their magnetic field dependence 

reveals a spin-orbit gap of #SO=0.37 meV at zero magnetic field18. 
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Figure 1 |Nanotube double dot with integrated charge sensor. a, Scanning electron micrograph (with false colour) of a device similar to the measured
12C and 13C devices. The carbon nanotube (not visible) runs horizontally under the four Pd contacts (red). Top-gates (blue) create voltage-tunable tunnel
barriers enabling the formation of a single or double quantum dot between contacts 1 and 2. Plunger gates L and R (green) control the occupancy of the
double dot. A separate single dot contacted by Pd contacts 3 and 4 is controlled with gate plunger gate S (grey) and is capacitively coupled to the double
dot by a coupling wire (orange). b, Current through the double dot, Idd, (colour scale) with the top-gates configured to form a large single dot. c, When
carriers beneath the middle gate, M, are depleted, Idd shows typical double-dot transport behaviour, demarcating the honeycomb charge stability pattern.
d, Within certain gate voltage ranges, honeycomb cells with larger addition energy and fourfold periodicity (outlined with dashed lines) indicate the filling
of spin and orbital states in shells. Source–drain bias is −1.0mV for b–d.

that for negative bias (purple and green), spin-blockade leakage
current is strongly peaked at B‖ = 0, whereas for positive bias (red),
the unblockaded current does not depend on field. The peak in
leakage current is shown for two values of VM, indicating that the
width of the peak is independent of interdot tunnel coupling t . As
discussed below, this field dependence can be understood in terms
of hyperfine-mediated spin relaxation.

The striking difference in field dependence of spin-blockade
leakage current between 12C and 13C devices is illustrated in
Fig. 3a,b. These data show that for negative (spin-blockaded) bias,
leakage current is a minimum at B‖ = 0 for the 12C device and a
maximum at B‖ = 0 for the 13C device. In fourteen instances of spin
blockade measured in four devices (two 13C and two 12C), we find
that leakage current minima can occur at B‖ = 0 in both 12C and
13C devices, particularly for stronger interdot tunnelling. For weak
interdot tunnelling, however, only the 13C devices show maxima of

spin-blockade leakage at B‖ = 0, presumably because the width and
height of this feature are strongly suppressed in 12C nanotubes. In
all cases, the positive bias (non-spin-blockade) current shows no
appreciable field dependence.

Figure 3e shows spin-blockade leakage current as a function of
B‖ at fixed detuning (the detuning value is shown as a black line
in Fig. 3a), along with a best-fit Lorentzian, for the 12C device. The
Lorentzian formwas notmotivated by theory, but seems to fit rather
well. The width of the dip around B‖ = 0 decreases with decreasing
interdot tunnelling (configuration Fig. 3e has t ∼ 50 µeV, on the
basis of charge-state transition width21), which may explain why it
is not observed in the weakly coupled regime of Fig. 3b,f. We note
that a similar zero-field dip in spin-blockade leakage current was
recently reported in a double dot formed in an InAs nanowire24.
There the dip was attributed to spin–orbit coupling, an effect that
is also present in carbon nanotubes25.
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Figure 1 |Nanotube double dot with integrated charge sensor. a, Scanning electron micrograph (with false colour) of a device similar to the measured
12C and 13C devices. The carbon nanotube (not visible) runs horizontally under the four Pd contacts (red). Top-gates (blue) create voltage-tunable tunnel
barriers enabling the formation of a single or double quantum dot between contacts 1 and 2. Plunger gates L and R (green) control the occupancy of the
double dot. A separate single dot contacted by Pd contacts 3 and 4 is controlled with gate plunger gate S (grey) and is capacitively coupled to the double
dot by a coupling wire (orange). b, Current through the double dot, Idd, (colour scale) with the top-gates configured to form a large single dot. c, When
carriers beneath the middle gate, M, are depleted, Idd shows typical double-dot transport behaviour, demarcating the honeycomb charge stability pattern.
d, Within certain gate voltage ranges, honeycomb cells with larger addition energy and fourfold periodicity (outlined with dashed lines) indicate the filling
of spin and orbital states in shells. Source–drain bias is −1.0mV for b–d.

that for negative bias (purple and green), spin-blockade leakage
current is strongly peaked at B‖ = 0, whereas for positive bias (red),
the unblockaded current does not depend on field. The peak in
leakage current is shown for two values of VM, indicating that the
width of the peak is independent of interdot tunnel coupling t . As
discussed below, this field dependence can be understood in terms
of hyperfine-mediated spin relaxation.

The striking difference in field dependence of spin-blockade
leakage current between 12C and 13C devices is illustrated in
Fig. 3a,b. These data show that for negative (spin-blockaded) bias,
leakage current is a minimum at B‖ = 0 for the 12C device and a
maximum at B‖ = 0 for the 13C device. In fourteen instances of spin
blockade measured in four devices (two 13C and two 12C), we find
that leakage current minima can occur at B‖ = 0 in both 12C and
13C devices, particularly for stronger interdot tunnelling. For weak
interdot tunnelling, however, only the 13C devices show maxima of

spin-blockade leakage at B‖ = 0, presumably because the width and
height of this feature are strongly suppressed in 12C nanotubes. In
all cases, the positive bias (non-spin-blockade) current shows no
appreciable field dependence.

Figure 3e shows spin-blockade leakage current as a function of
B‖ at fixed detuning (the detuning value is shown as a black line
in Fig. 3a), along with a best-fit Lorentzian, for the 12C device. The
Lorentzian formwas notmotivated by theory, but seems to fit rather
well. The width of the dip around B‖ = 0 decreases with decreasing
interdot tunnelling (configuration Fig. 3e has t ∼ 50 µeV, on the
basis of charge-state transition width21), which may explain why it
is not observed in the weakly coupled regime of Fig. 3b,f. We note
that a similar zero-field dip in spin-blockade leakage current was
recently reported in a double dot formed in an InAs nanowire24.
There the dip was attributed to spin–orbit coupling, an effect that
is also present in carbon nanotubes25.
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Fig. 4 (a) Understanding the four quantum states of the lowest electronic shell (red). (b) 

At sub-Kelvin temperatures and finite magnetic field the four combinations of clock-

wise/counterclockwise motion (K/K’) and spin up/down (!/") are clearly resolved in a 

suspended device using tunneling spectroscopy. (c) Their magnetic field dependence 

reveals a spin-orbit gap of #SO=0.37 meV at zero magnetic field18. 
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