Electron transport in graphene

“Graphene = a material for future electronics”
- Conductivity & mobility in graphene

- Drude picture

- Effective mass

- Boltzmann equation
- Scattering mechanisms, limitation of mobility
- Present status
- Applications

“Dirac physics” in transport
- Klein tunneling
- Reflectionless transmission in p-n junction
- Evidence of Klein backscattering in interference pattern of n-p-n
junction

Graphene based Hybrid Quantum Devices

Sources:
http://www.tnhtconf.org/2010/Presentaciones/TNT2010 Geim.pdf



http://www.tntconf.org/2010/Presentaciones/TNT2010_Geim.pdf

Conductivity, mobility

Mobility, conductance:
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Conductivity (Drude model):

R,, (kQ)

__e‘nt et
o= =0
How to separate mobility (1) and e density (n)? b0
E 1 40 4
Measure: p + Hall resistance Ry = == = ——
jxB ne 30

(zwo,,01) *u

u (108 cm2 V=1 g1)
no
o

Effect of gate voltage, V,?
N=CjV,/e > n~V; > kp~V;

—_
o
L

é_

-0 0 40 80

Measurement:
- At V, zero, R, (and n) changes sign = boarder between e and h bands

- mobility largest at Dirac point (V, = 0).
Nature 438, 201 (2005)



Conductivity, mobility

How to calculate conductivity? E(k) = hvr|k|

g=etl R vs. Vg Transport characteristics
m

What is m, effective mass?

1 _ 1 _ 1 0%E
m my, h?0ok2

AR, (kQ)
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Zmeff

For quadratic dispersion: E = y M = Merf

For Dirac electrons, where E(E) = th|E| ?

Naively 1/m= 0, but NOT. T 2
To calculate 1/m: , 2 3
[ 3
2 2
92|k| S — ky > 1 — lv k_y conduction band
ok} k3 7 my, R OF K3
olkl _ 12k,
ok, 2 |kl

- Effective mass depends on k

One has to average 1/m for all filled states: Nature 438, 201 (2005)




Conductivity, mobility

Accurate calculation of a?

From Boltzmann equation (see Solyom 24339) R vs. vg Transport characteristics

d?k 1

illed k states (21)2 my.,

L2 2oy,
o =e‘T— er22ff

HOMEWORK Calculate o

: — 52, VF
Result: 0=eT kg .

with relaxation length [ = viT

L g
2e? a3 E]
o=lky o a.
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h conduction band
Mean free path: [ = Z,u\/nn

E.g. for mobility =600.000, | is only = 3um

Nature 438, 201 (2005)



Scattering mechanisms in graphene

What limits the mobility at room T?
Source of 1/t ?

Scattering mechanisms resulting resistivity:

- potential scattering: impurities, defects, vacancies
- Electron — phonon scattering

- Etc.

Usual terms: (see Solyom II.)
- Residual resistivity (py): T independent
- Longitudinal acoustic phonons (p,): linearinT

T - . W\ 7Dk, T
'U(-Vg’ I) = 'UU(V;;;) +palT): palT) = <_> "

1,2 24,2
2h?pviv

Measurements (see Fig. a,b)

- At higher T, strong deviation from linear T dependence
- Dependence also on Vg

=1t suggests scattering on high energy phonon modes

Chen Nature Nanotech. 3, 206, (2008)
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Scattering mechanisms in graphene
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Scattering mechanisms in graphene

What limits the mobility at room T?

Different T dependence of p,, p, , pgallows to [l

separate the three contributions. (pg = p-py-pa) i iy (R

paV independent S ] |

pg ~V, " relation confirmed . _

- Residual resistivity dominates 0. 1 -'-1?0 =

Fig. b
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Scattering mechanisms in graphene

What limits the mobility at room T?
Different T dependence of p,, p, , pgallows to

separate the three contributions. (pg = p-py-P,) T dependence

Fig. d 06 1 e —e— Kish graphite
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Comparision with graphites, sources of exfoliated graphene
Mobility is much smaller than for graphites. It is impurity dominated.
—>Residual res. not due to point defects
but due to charge impurities in SiO, _ <t ate




Scattering mechanisms in graphene

What limits the mobility at room T?
Different T dependence of p,, p, , pgallows to

separate the three contributions. (pg = p-py-P,) T dependence
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Mobility is much smaller than for graphites. It is impurity dominated. y: Problem, SiO,
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Suspended flakes

SiO is etched by BHF PMGI based organic polymer
N. Tombros arXiv:1009.4213

SEI 300KV X5000 1um  WD89mm

mobility up to 200,000cm?/V's

Possible with any metals ->
Mean free path L ~ um

spin physics, supercondcutivity
600.000 cm2/Vs at n = 5.0 E9 cm-2 at 77K.

low-T mobilities L~3um

few million cm?2/V's
Manchester, arxiv 2010

—> Demostration of FQHE


http://xxx.lanl.gov/abs/1009.4213

Suspended flakes

SiO is etched by BHF

mobility up to 200,000cm?/V's
Mean free path L ~ um

low-T mobilities
few million cm?2/V's
Manchester, arxiv 2010

—> Demostration of FQHE

PMGI based organic polymer
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http://xxx.lanl.gov/abs/1009.4213

Better substrate — Boron Nitride

room-T mobility
close to 100,000 cm2/V's

because it has an atomically

smooth surface that is relatively free of
dangling bonds and

charge traps. It also has a lattice constant
similar to that of graphite,

and has large optical phonon modes and a
large electrical bandgap.
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Dean et. al., NatureNanotech 5, 722 (2010)



Electron transport in graphene

“Dirac physics” in transport
- Klein tunneling
- Reflectionless transmission in p-n junction
- Evidence of Klein backscattering in interference pattern of n-p-n
junction

Graphene based Hybrid Quantum Devices

Sources:
http://www.tnhtconf.org/2010/Presentaciones/TNT2010 Geim.pdf



http://www.tntconf.org/2010/Presentaciones/TNT2010_Geim.pdf

Band structure

Lattice, reciproce lattice
Unit cell with two atoms
A and B sublattice
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Grafén tight binding sdvszerkezeti leirasa:

Els6 szomszéd hopping kozelitésben (csak masik alracsra

ugorhat az elektron)

Hamilton 2*2 matrix, A és B alracs komponensekre:
H=v. oep

ahol o a Pauli matrixok, p az e. impulzusa, v = 10°m/s

A két alracs pseudospinként viselkedik:

| T> : A alracson tartdzkodas (z6ld)

| >:B alracson tartdzkodas (piros)

- Formailag a Dirac egyenlettel megegyez6 leirast, ahol

spin szerepét atveszi a pszeudospin

“Schrédinger ultra-relativistic massless
fermions” particles Dirac fermions
H=p*12m" H=c& p H=v.5-p

metals neutron stars
and and
semiconductors accelerators




Tunneling, Klein tunneling

Beenakker, Reviews of Modern Physics, 80, 1337 (2008)

1 CLASSICAL PHYSICS

Electron as
low-energy
particle

O

—Barrier

2 QUANTUM MECHANICS

Electron as
“slow-
moving”
wave

J N

3 QUANTUM ELECTRODYNAMICS

Electron as
high-speed

Jil

Geim, Kim, Sci.Am. 298, 90 (2008)

No chance of
penetrating
barrier

Some
chance of
penetrating
barrier

|

100%
chance of
Eenet rating

arrier |




Tunneling, Klein Backscattering

Mex R KJP

Evolution of group velocity:

e L (~)E; (%)

= = —e *
dt mxx * XX 0

N-P junction: In linear electrostatic potential:

Potential profile with —F E. = F F — _oFE

a step of Uoat a distance d v oX,  Ex 0 X €Lo

At normal incident: ky =0-> dstx =0->

e ——

backscattering is avoided

conduction band

Electron can propagate through an infinite
high potential barrier.

Klein scattering:
perfect transmission at normal incident

Beenakker, Reviews of Modern Physics, 80, 1337 (2008)



Tunneling, Klein tunneling

More precisely, quasi classical dynamics
Two Dirac cones:  Conduction band E = hvgl|k|,

Valance band E = —hvg|k|

—_

=l _lp, ko oo 2k
N-P junction: thus |v| = vg, v||k
Potential profile with .
a step of Uoat a distance d hk = F = —eE,e,

Effect of the potential profile, U (see figure):

e ——

- k decreases and changes sign

conduction band

- based on (*), v stays constant, i.e. ¥ = vpe,.

— e ends up in the valence band

Klein scattering:
perfect transmission at normal incident

Beenakker, Reviews of Modern Physics, 80, 1337 (2008)



Tunneling, Klein tunneling

Result of proper calculation Transmission probability vs. D
Wave function matching - - of normally incident electrons
b - in single- and bi-layer graphene (red and
IEJ—k’ """"" P Voo blue curves,respectively) and in a non-chiral
3 " zero-gap semiconductor (green curve)

1.0

0.8 1

0.6 1

0.4 1

0.2 k
Transmission probability T 0+—=
through a 100-nm-wide D (oem)
barrier as a function of the
incident angle, two different
barrier height —> Difficult to measure since e-s
Katsnelson et al Nature Physics, 2, 620 (2006) out of normal incident also arrive




Klein backscattering & Fabry-Perot Interferences

Backscattering on P-N-P junction
. (b) (© When incident angle, a is varied from positive to
B=0 negative, phase of the reflection amplitude (R)

B=0 B>0
2 jumps 1. Its sign changes. (At a=0, R=0).

If a<>0 - R>0, several scatterings in P-N-P 2>
interference pattern
Accumulated phase in one circle:
AB= 20wsk+AB1+AB2
where Bwsk phase from travelling in N
AB1,AB:2 Klein backreflection phase of the
interfaces

W

At B=0 (see Fig. a) the incident angles
AB1(2) at P-N and N-P have opposite signs = jumps in AB1, AB2cancels

At B>0 (see Fig. b), trajectories are curved, = incident angles at P-N and N-P can be equal
In this case one can show that AB1+AB2 =1t (It is a Barry phase!)

Thus for B=0 A/ and trajectories with small py 1 shift is expected (i.e. sign change)
transmission amplitude

(Fig.c) one can show, it is robust against barrier roughness
Shytov et al. PRL 101, 156804 (2008)



W

Klein backscattering & Fabry-Perot Interferences

B=0 B>0 2—

Remark (Barry-phase):

50 nm

Trajectory in Fig.a corresponds to 1 I
Trajectory in Fig.b corresponds to

The main difference that during one

circle between P-N and N-P:

the k vactor of 3 goes around k=0

while for 1 NOT.

This generates the Barry phase:

Due to the chiral symmetry, topological singularity
at degenerecy point of the band structure k=0. -0

h{mﬂ‘)

[
Led
[
Led

Shytov et al. PRL 101, 156804 (2008) k, (nm™)



Klein backscattering & Fabry-Perot Interferences

N-P-N device
Separate gating by backgate and topgate
Topgate width=20nm! -2 ballistic ~ 6 (e2/h)

0

G vs. Vi vs. Vee

e Conductance is lower when N-
P-N setting instead of N-N-N
*Oscillations at N-P-N
configuration:

- V16 varies pot. barrier 2
Bwek = oscillations
-Oscillatory G is induced by
trajectories with incident
angle where neither T, nor R
is large (i.e. a not too small)

Conductance (e2/h)

Young et al. Nature Physics 5, 222 (2009)



Klein backscattering & Fabry-Perot Interferences

N-P-N device
Separate gating by backgate and topgate
Topgate width=20nm! -2 ballistic

Gc-s: (e2/h)

U
Young et al. Nature Physics 5, 222 (2009)

30T

6o % i/

G oscillations vs. B (Dots experiment, line theory)
At different B fields (B=0, 200, 400, 600, 800mT) the

oscillations of G.
In this B range = it shift is induced in the interference

patern.

n, (1017 cm™2)~V/1g



Hybrid Graphene Devices

Entanglement?



Hybrid Graphene Devices




Infrastructure
BME:

Low T transport lab: He liquefier, 4 cryostats, He4,
He3 systems, electronics, MCBJ, Kerr ...

BME & MFA Joint lab:
E-lithography: JEOL 848 + Raith Elphy;
LeoXBeam SEM/FIB, AFM, STM,

Clean room (300m?), Raman, ...

Collaboration with L.P. Biro MFA

AccV Spot Magn \é/i
FaT. T MO R T . FaT+EE+1aT™
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